When Reviewers Lock Horn: Finding Disagreement in Scientific Peer Reviews

Sandeep Kumar, Tirthankar Ghosal, Asif Ekbal

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

To this date, the efficacy of the scientific publishing enterprise fundamentally rests on the strength of the peer review process. The journal editor or the conference chair primarily relies on the expert reviewers' assessment, identify points of agreement and disagreement and try to reach a consensus to make a fair and informed decision on whether to accept or reject a paper. However, with the escalating number of submissions requiring review, especially in top-tier Artificial Intelligence (AI) conferences, the editor/chair, among many other works, invests a significant, sometimes stressful effort to mitigate reviewer disagreements. Here in this work, we introduce a novel task of automatically identifying contradictions among reviewers on a given article. To this end, we introduce ContraSciView, a comprehensive review-pair contradiction dataset on around 8.5k papers (with around 28k review pairs containing nearly 50k review pair comments) from the open review-based ICLR and NeurIPS conferences. We further propose a baseline model that detects contradictory statements from the review pairs. To the best of our knowledge, we make the first attempt to identify disagreements among peer reviewers automatically. We make our dataset and code public for further investigations.

Original languageEnglish
Title of host publicationEMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings
EditorsHouda Bouamor, Juan Pino, Kalika Bali
PublisherAssociation for Computational Linguistics (ACL)
Pages16693-16704
Number of pages12
ISBN (Electronic)9798891760608
DOIs
StatePublished - 2023
Event2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023 - Hybrid, Singapore, Singapore
Duration: Dec 6 2023Dec 10 2023

Publication series

NameEMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings

Conference

Conference2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023
Country/TerritorySingapore
CityHybrid, Singapore
Period12/6/2312/10/23

Funding

Sandeep Kumar acknowledges the Prime Minister Research Fellowship (PMRF) program of the Govt of India for its support.

Fingerprint

Dive into the research topics of 'When Reviewers Lock Horn: Finding Disagreement in Scientific Peer Reviews'. Together they form a unique fingerprint.

Cite this