Abstract
This article presents a practical model for evaluating polymer feedstock materials as candidates for 3D printing across a variety of extrusion-based platforms. In order for a material to be successfully utilized for 3D printing operations, a series of fundamental conditions must be met. First, pressure-driven extrusion must occur through a given diameter nozzle at a specified flow rate. Second, the extruded material must form and sustain the desired shape. Third, the extruded structure must be able to bridge a specified gap and serve as a mechanically sound foundation for successive deposits. Finally, the deposited structure must be dimensionally stable during the transition to the final state (i.e. fully cured at room temperature). This article presents a framework for extrusion-based printing and a simple viscoelastic model for each of these conditions based on the rheological and thermo-physical properties of the candidate material and the processing parameters of the extrusion-based deposition platform. The model is demonstrated to be a useful tool for the evaluation of example test cases including: high temperature thermoplastics (polyphenylsulfone), fiber reinforced thermoplastics (acrylonitrile butadiene styrene), low-viscosity thermosets (epoxy resins), and thermoplastics with a high coefficient of thermal expansion (polypropylene).
Original language | English |
---|---|
Pages (from-to) | 526-537 |
Number of pages | 12 |
Journal | Journal of Manufacturing Processes |
Volume | 35 |
DOIs | |
State | Published - Oct 2018 |
Funding
A portion of the research was sponsored by the U.S. Department of Energy , Office of Energy Efficiency and Renewable Energy , Advanced Manufacturing Office , under contract DE-AC05-00OR22725 with UT-Battelle, LLC.
Funders | Funder number |
---|---|
U.S. Department of Energy | |
Advanced Manufacturing Office | DE-AC05-00OR22725 |
Office of Energy Efficiency and Renewable Energy |
Keywords
- 3D printing
- Extrusion
- Fused filament fabrication (FFF)
- Thermoplastic polymers
- Viscoelastic model