Abstract
A grand challenge in biology is to discover evolutionary traits-features of organisms common to a group of species with a shared ancestor in the tree of life (also referred to as phylogenetic tree). With the growing availability of image repositories in biology, there is a tremendous opportunity to discover evolutionary traits directly from images in the form of a hierarchy of prototypes. However, current prototype-based methods are mostly designed to operate over a flat structure of classes and face several challenges in discovering hierarchical prototypes, including the issue of learning over-specific prototypes at internal nodes. To overcome these challenges, we introduce the framework of Hierarchy aligned Commonality through Prototypical Networks (HComP-Net). The key novelties in HComP-Net include a novel over-specificity loss to avoid learning over-specific prototypes, a novel discriminative loss to ensure prototypes at an internal node are absent in the contrasting set of species with different ancestry, and a novel masking module to allow for the exclusion of over-specific prototypes at higher levels of the tree without hampering classification performance. We empirically show that HComP-Net learns prototypes that are accurate, semantically consistent, and generalizable to unseen species in comparison to baselines. Our code is publicly accessible at Imageomics Institute Github site: https://github.com/Imageomics/HComPNet.
| Original language | English |
|---|---|
| Title of host publication | 13th International Conference on Learning Representations, ICLR 2025 |
| Publisher | International Conference on Learning Representations, ICLR |
| Pages | 8318-8354 |
| Number of pages | 37 |
| ISBN (Electronic) | 9798331320850 |
| State | Published - 2025 |
| Event | 13th International Conference on Learning Representations, ICLR 2025 - Singapore, Singapore Duration: Apr 24 2025 → Apr 28 2025 |
Publication series
| Name | 13th International Conference on Learning Representations, ICLR 2025 |
|---|
Conference
| Conference | 13th International Conference on Learning Representations, ICLR 2025 |
|---|---|
| Country/Territory | Singapore |
| City | Singapore |
| Period | 04/24/25 → 04/28/25 |
Funding
This research is supported by National Science Foundation (NSF) awards for the HDR Imageomics Institute (OAC-2118240). We are thankful for the support of computational resources provided by the Advanced Research Computing (ARC) Center at Virginia Tech. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains, and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript or allow others to do so for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://www.energy.gov/doe-public-access-plan).