Weyl metallic state induced by helical magnetic order

Jian Rui Soh, Irián Sánchez-Ramírez, Xupeng Yang, Jinzhao Sun, Ivica Zivkovic, J. Alberto Rodríguez-Velamazán, Oscar Fabelo, Anne Stunault, Alessandro Bombardi, Christian Balz, Manh Duc Le, Helen C. Walker, J. Hugo Dil, Dharmalingam Prabhakaran, Henrik M. Rønnow, Fernando de Juan, Maia G. Vergniory, Andrew T. Boothroyd

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

In the rapidly expanding field of topological materials there is growing interest in systems whose topological electronic band features can be induced or controlled by magnetism. Magnetic Weyl semimetals, which contain linear band crossings near the Fermi level, are of particular interest owing to their exotic charge and spin transport properties. Up to now, the majority of magnetic Weyl semimetals have been realized in ferro- or ferrimagnetically ordered compounds, but a disadvantage of these materials for practical use is their stray magnetic field which limits the minimum size of devices. Here we show that Weyl nodes can be induced by a helical spin configuration, in which the magnetization is fully compensated. Using a combination of neutron diffraction and resonant elastic x-ray scattering, we find that below T N = 14.5 K the Eu spins in EuCuAs develop a planar helical structure which induces two quadratic Weyl nodes with Chern numbers C = ±2 at the A point in the Brillouin zone.

Original languageEnglish
Article number7
Journalnpj Quantum Materials
Volume9
Issue number1
DOIs
StatePublished - Dec 2024
Externally publishedYes

Fingerprint

Dive into the research topics of 'Weyl metallic state induced by helical magnetic order'. Together they form a unique fingerprint.

Cite this