Welding process development for spent nuclear fuel canister repair

Wei Tang, Stylianos Chatzidakis, Roger Miller, Jian Chen, Doug Kyle, John Scaglione, Caleb Schrad

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

The potential for stress corrosion cracking (SCC) of welded stainless-steel interim storage containers for spent nuclear fuel (SNF) has been identified as a high priority data gap. This paper presents a fusion welding process that was developed for SNF canister repair. Submerged arc welding (SAW) was developed to weld 12.7 mm (0.5 in.) thick 304L stainless steel plates to simulate the initial welds on SNF canisters. The SAW procedure was qualified following ASME Boiler and Pressure Vessel Code requirements. During SAW, the welding temperature was recorded at various locations by using thermocouples. After SAW, weld microstructures were characterized, joint mechanical properties were tested, and the maximum tensile residual stress direction was identified. After SAW procedure qualification, artificial cracks were excavated perpendicular to the maximum tensile residual stress direction in the SAW heat affected zone. Machine cold-wire gas tungsten arc welding (CW-GTAW) was developed and used for repair welding at cracked locations.

Original languageEnglish
Title of host publicationCodes and Standards
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791858929
DOIs
StatePublished - 2019
EventASME 2019 Pressure Vessels and Piping Conference, PVP 2019 - San Antonio, United States
Duration: Jul 14 2019Jul 19 2019

Publication series

NameAmerican Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Volume1
ISSN (Print)0277-027X

Conference

ConferenceASME 2019 Pressure Vessels and Piping Conference, PVP 2019
Country/TerritoryUnited States
CitySan Antonio
Period07/14/1907/19/19

Funding

This material is based upon work supported by the US Department of Energy, Office of Nuclear Energy, under contract number DE-AC05-00OR22725. The authors gratefully acknowledge the metallographic specimen preparation of Tom Geer and Victoria Cox, tensile tests of Donald Erdman and Rick Lowden, radiographical inspection of Jessica Osborne, along with specimen and coupon machining of technicians at the machine shop of ORNL. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency, contractor, or subcontractor thereof. The views and opinions of authors expressed herein do not necessarily state or reflect This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

FundersFunder number
US Department of Energy
UT-Battelle
United States Government
U.S. Department of Energy
Office of Nuclear EnergyDE-AC05-00OR22725

    Keywords

    • GTAW
    • Process qualification
    • Repair welding
    • Spent nuclear fuel canister

    Fingerprint

    Dive into the research topics of 'Welding process development for spent nuclear fuel canister repair'. Together they form a unique fingerprint.

    Cite this