Water desalination using nanoporous single-layer graphene

Sumedh P. Surwade, Sergei N. Smirnov, Ivan V. Vlassiouk, Raymond R. Unocic, Gabriel M. Veith, Sheng Dai, Shannon M. Mahurin

Research output: Contribution to journalArticlepeer-review

1515 Scopus citations

Abstract

By creating nanoscale pores in a layer of graphene, it could be used as an effective separation membrane due to its chemical and mechanical stability, its flexibility and, most importantly, its one-atom thickness. Theoretical studies have indicated that the performance of such membranes should be superior to state-of-the-art polymer-based filtration membranes, and experimental studies have recently begun to explore their potential. Here, we show that single-layer porous graphene can be used as a desalination membrane. Nanometre-sized pores are created in a graphene monolayer using an oxygen plasma etching process, which allows the size of the pores to be tuned. The resulting membranes exhibit a salt rejection rate of nearly 100% and rapid water transport. In particular, water fluxes of up to 106 g m-2 s-1 at 40 °C were measured using pressure difference as a driving force, while water fluxes measured using osmotic pressure as a driving force did not exceed 70 g m-2 s-1 atm-1.

Original languageEnglish
Pages (from-to)459-464
Number of pages6
JournalNature Nanotechnology
Volume10
Issue number5
DOIs
StatePublished - May 7 2015

Funding

Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy. Research also supported through a user proposal at ORNL’s Center for Nanophase Materials Sciences (CNMS), which is a US Department of Energy, Office of Science User Facility.

Fingerprint

Dive into the research topics of 'Water desalination using nanoporous single-layer graphene'. Together they form a unique fingerprint.

Cite this