Abstract
Lithium is extensively utilized in industrial energy production, particularly in lithium-ion batteries, and in pharmaceuticals for the treating clinical mood disorders. Consequently, lithium is frequently detected in various environmental matrices. It has been reported to cause a range of toxic effects on aquatic organisms including oxidative stress, neurological disorders, and reproductive suppression. Water acidification is a global issue with numerous negative impacts on aquatic organisms. It can alter the physio-chemical properties and bioavailability of metal ions. The acidic leaching process during lithium battery treatment and global water acidification both suggest that lithium contamination often occurs in acidic environments. In the present study, Daphnia magna neonates were exposed to four treatments (control, lithium alone, low pH, and combined) to investigate whether an acidic environment exacerbates the toxic effects of lithium on aquatic organisms and to explore potential toxic action mechanisms. The results indicated that low pH posed a significant threat to the growth and reproduction of D. magna. When exposed to both lithium and low pH, there was increased lithium accumulation and an energy trade-off response, leading to increased energy allocation to reproduction and reduced energy for growth. Lithium exposure stimulated D. magna activity, while low pH inhibited it, suggesting that an imbalance in energy consumption and supply. Combined exposure to lithium and low pH resulted in severe oxidative stress due to mitochondrial dysfunction, under-utilization of energy substances, and increased ionic homeostasis disturbances. Consequently, the exposed organism altered apoptosis and autophagy processes to maintain homeostasis. The present study demonstrated that lithium and water acidification posed a population-level threat to D. magna, and their combined exposure significantly largely exacerbated the toxic effects.
Original language | English |
---|---|
Article number | 177143 |
Journal | Science of the Total Environment |
Volume | 955 |
DOIs | |
State | Published - Dec 10 2024 |
Funding
This work was supported by National Natural Science Foundation of China (NSFC 41576110; 31770554). Besides, we also want to thank Mr. Shibin Ye (University of Macau, China) for his help in graphical guidance.
Keywords
- Antioxidant system
- Apoptosis
- Daphnia magna
- Energy balance
- Lithium toxicity
- Water acidification