Volumetric Data Exploration with Machine Learning-Aided Visualization in Neutron Science

Yawei Hui, Yaohua Liu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Recent advancements in neutron and X-ray sources, instrumentation and data collection modes have significantly increased the experimental data size (which could easily contain 108–1010 data points), so that conventional volumetric visualization approaches become inefficient for both still imaging and interactive OpenGL rendition in a 3D setting. We introduce a new approach based on the unsupervised machine learning algorithm, Density-Based Spatial Clustering of Applications with Noise (DBSCAN), to efficiently analyze and visualize large volumetric datasets. Here we present two examples of analyzing and visualizing datasets from the diffuse scattering experiment of a single crystal sample and the tomographic reconstruction of a neutron scanning of a turbine blade. We found that by using the intensity as the weighting factor in the clustering process, DBSCAN becomes very effective in de-noising and feature/boundary detection, and thus enables better visualization of the hierarchical internal structures of the neutron scattering data.

Original languageEnglish
Title of host publicationAdvances in Computer Vision - Proceedings of the 2019 Computer Vision Conference CVC
EditorsSupriya Kapoor, Kohei Arai
PublisherSpringer Verlag
Pages257-271
Number of pages15
ISBN (Print)9783030177942
DOIs
StatePublished - 2020
EventComputer Vision Conference, CVC 2019 - Las Vegas, United States
Duration: Apr 25 2019Apr 26 2019

Publication series

NameAdvances in Intelligent Systems and Computing
Volume943
ISSN (Print)2194-5357
ISSN (Electronic)2194-5365

Conference

ConferenceComputer Vision Conference, CVC 2019
Country/TerritoryUnited States
CityLas Vegas
Period04/25/1904/26/19

Funding

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

FundersFunder number
Compute and Data Environment for Science
Office of Basic Energy Sciences
Scientific User Facilities Division
U.S. Department of Energy
Office of Science

    Keywords

    • Feature extraction
    • Scientific visualization
    • Unsupervised learning and clustering
    • Volumetric dataset

    Fingerprint

    Dive into the research topics of 'Volumetric Data Exploration with Machine Learning-Aided Visualization in Neutron Science'. Together they form a unique fingerprint.

    Cite this