Visualization System for Evolutionary Neural Networks for Deep Learning

Junghoon Chae, Catherine D. Schuman, Steven R. Young, J. Travis Johnston, Derek C. Rose, Robert M. Patton, Thomas E. Potok

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Deep learning is actively used in a wide range of fields for scientific discovery. To effectively apply deep learning to a particular problem, it is important to select an appropriate network architecture and other hyper-parameters (at each layer). Evolving architectures and hyper-parameters using a genetic algorithm is one current approach to search the huge space of all possible configurations to find those more optimal for the problem. However, examining an evolutionary process and tuning the genetic algorithm are challenging, pushing most users to treat the process as a black box. To address this challenge, we propose a visualization system for evolutionary neural networks for deep learning. The key feature of our visualization system is to provide a visual analytics environment for evaluating a genetic algorithm in order to improve the underlying operations to reduce time to find good solutions. Our system is able to not only visualize how a genetic algorithm traverses its search space but also allows users to examine evolving networks in-depth to get insights to improve performance through interactive visualization components.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE International Conference on Big Data, Big Data 2019
EditorsChaitanya Baru, Jun Huan, Latifur Khan, Xiaohua Tony Hu, Ronay Ak, Yuanyuan Tian, Roger Barga, Carlo Zaniolo, Kisung Lee, Yanfang Fanny Ye
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4498-4502
Number of pages5
ISBN (Electronic)9781728108582
DOIs
StatePublished - Dec 2019
Event2019 IEEE International Conference on Big Data, Big Data 2019 - Los Angeles, United States
Duration: Dec 9 2019Dec 12 2019

Publication series

NameProceedings - 2019 IEEE International Conference on Big Data, Big Data 2019

Conference

Conference2019 IEEE International Conference on Big Data, Big Data 2019
Country/TerritoryUnited States
CityLos Angeles
Period12/9/1912/12/19

Funding

Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Keywords

  • evolutionary algorithm
  • neural network
  • visualization

Fingerprint

Dive into the research topics of 'Visualization System for Evolutionary Neural Networks for Deep Learning'. Together they form a unique fingerprint.

Cite this