Visual Analytics for Deep Embeddings of Large Scale Molecular Dynamics Simulations

Junghoon Chae, Debsindhu Bhowmik, Heng Ma, Arvind Ramanathan, Chad Steed

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Molecular Dynamics (MD) simulation have been emerging as an excellent candidate for understanding complex atomic and molecular scale mechanism of bio-molecules that control essential bio-physical phenomenon in a living organism. But this MD technique produces large-size and long-timescale data that are inherently high-dimensional and occupies many terabytes of data. Processing this immense amount of data in a meaningful way is becoming increasingly difficult. Therefore, specific dimensionality reduction algorithm using deep learning technique has been employed here to embed the high-dimensional data in a lower-dimension latent space that still preserves the inherent molecular characteristics i.e. retains biologically meaningful information. Subsequently, the results of the embedding models are visualized for model evaluation and analysis of the extracted underlying features. However, most of the existing visualizations for embeddings have limitations in evaluating the embedding models and understanding the complex simulation data. We propose an interactive visual analytics system for embeddings of MD simulations to not only evaluate and explain an embedding model but also analyze various characteristics of the simulations. Our system enables exploration and discovery of meaningful and semantic embedding results and supports the understanding and evaluation of results by the quantitatively described features of the MD simulations (even without specific labels).

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE International Conference on Big Data, Big Data 2019
EditorsChaitanya Baru, Jun Huan, Latifur Khan, Xiaohua Tony Hu, Ronay Ak, Yuanyuan Tian, Roger Barga, Carlo Zaniolo, Kisung Lee, Yanfang Fanny Ye
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1759-1764
Number of pages6
ISBN (Electronic)9781728108582
DOIs
StatePublished - Dec 2019
Event2019 IEEE International Conference on Big Data, Big Data 2019 - Los Angeles, United States
Duration: Dec 9 2019Dec 12 2019

Publication series

NameProceedings - 2019 IEEE International Conference on Big Data, Big Data 2019

Conference

Conference2019 IEEE International Conference on Big Data, Big Data 2019
Country/TerritoryUnited States
CityLos Angeles
Period12/9/1912/12/19

Funding

Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, under contract number DE-AC05-00OR22725. This research is sponsored in part by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

FundersFunder number
U. S. Department of Energy
U.S. Department of Energy
Office of Science
Advanced Scientific Computing ResearchDE-AC05-00OR22725
Oak Ridge National Laboratory

    Keywords

    • HCI
    • machine learning
    • molecular dynamics
    • visual analytics

    Fingerprint

    Dive into the research topics of 'Visual Analytics for Deep Embeddings of Large Scale Molecular Dynamics Simulations'. Together they form a unique fingerprint.

    Cite this