@inproceedings{91445bb2cfbd404fa0a2a564cb926a4d,
title = "Visual Analytics for Deep Embeddings of Large Scale Molecular Dynamics Simulations",
abstract = "Molecular Dynamics (MD) simulation have been emerging as an excellent candidate for understanding complex atomic and molecular scale mechanism of bio-molecules that control essential bio-physical phenomenon in a living organism. But this MD technique produces large-size and long-timescale data that are inherently high-dimensional and occupies many terabytes of data. Processing this immense amount of data in a meaningful way is becoming increasingly difficult. Therefore, specific dimensionality reduction algorithm using deep learning technique has been employed here to embed the high-dimensional data in a lower-dimension latent space that still preserves the inherent molecular characteristics i.e. retains biologically meaningful information. Subsequently, the results of the embedding models are visualized for model evaluation and analysis of the extracted underlying features. However, most of the existing visualizations for embeddings have limitations in evaluating the embedding models and understanding the complex simulation data. We propose an interactive visual analytics system for embeddings of MD simulations to not only evaluate and explain an embedding model but also analyze various characteristics of the simulations. Our system enables exploration and discovery of meaningful and semantic embedding results and supports the understanding and evaluation of results by the quantitatively described features of the MD simulations (even without specific labels).",
keywords = "HCI, machine learning, molecular dynamics, visual analytics",
author = "Junghoon Chae and Debsindhu Bhowmik and Heng Ma and Arvind Ramanathan and Chad Steed",
note = "Publisher Copyright: {\textcopyright} 2019 IEEE.; 2019 IEEE International Conference on Big Data, Big Data 2019 ; Conference date: 09-12-2019 Through 12-12-2019",
year = "2019",
month = dec,
doi = "10.1109/BigData47090.2019.9006048",
language = "English",
series = "Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "1759--1764",
editor = "Chaitanya Baru and Jun Huan and Latifur Khan and Hu, {Xiaohua Tony} and Ronay Ak and Yuanyuan Tian and Roger Barga and Carlo Zaniolo and Kisung Lee and Ye, {Yanfang Fanny}",
booktitle = "Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019",
}