Abstract
Virtual sensor technology, which uses simulation models/algorithms to calculate a value to represent an unmeasured variable or replace a directly measured reading, has attracted many studies in the heating, ventilation, air conditioning and refrigeration (HVAC&R) industry. However, most virtual sensor technologies are developed for fault detection and diagnostics (FDD) purposes, which generally compare the virtual sensor values with actual measured values to detect if any fault occurred and identify the causes that led to the fault. It is rare to see studies focus on control performance of virtual sensors after substituting an actual sensor. This is particularly important for the system with no redundant sensor since a virtual sensor is the most effective way to operate the system in the desirable region when any sensor failure occurs. To address this gap, this paper develops a new virtual pressure sensor technology to substitute the actual pressure measurement for electronic expansion valve (EXV) control in a vapor compression refrigeration system by integrating compressor and valve characteristics. The control performance of this proposed virtual pressure sensor technology under various operating conditions is validated with experimental data. Closed loop EXV control simulations with the proposed virtual pressure sensor are conducted, and the results are analyzed.
Original language | English |
---|---|
Article number | 4917 |
Journal | Energies |
Volume | 13 |
Issue number | 18 |
DOIs | |
State | Published - Sep 2020 |
Funding
Funding: This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Funders | Funder number |
---|---|
US Department of Energy | |
U.S. Department of Energy |
Keywords
- Electronic expansion valve
- Model in the loop
- Vapor compression refrigeration
- Virtual pressure sensor