Abstract
Hypothesis: Understanding the mechanisms of proton transfer on quartz surfaces in water is critical for a range of processes in geochemical, environmental, and materials sciences. The wide range of surface acidities (>9 pKa units) found on the ubiquitous mineral quartz is caused by the structural variations of surface silanol groups. Molecular scale simulations provide essential tools for elucidating the origin of site-specific surface acidities. Simulations: We used density-functional tight-binding-based molecular dynamics combined with rare-event metadynamics simulations to probe the mechanisms of deprotonation reactions from ten representative surface silanol groups found on both pristine and defect-rich quartz (1 0 1) surfaces with Si vacancies. Findings: The results show that deprotonation is a highly dynamic process where both the surface hydroxyls and bridging oxygen atoms serve as the proton acceptors, in addition to water. Deprotonation of embedded silanols through intrasurface proton transfer exhibited lower pKa values with less H-bond participation and higher energy barriers, suggesting a new mechanism to explain the bimodal acidity observed on quartz surface. Defect sites, recently shown to comprise a significant portion of the quartz (1 0 1) surface, diversify the coordination and local H-bonding environments of the surface silanols, changing both the deprotonation pathways and energetics, leading to a wider range of pKa values (2.4 to 11.5) than that observed on pristine quartz surface (10.4 and 12.1).
Original language | English |
---|---|
Pages (from-to) | 232-243 |
Number of pages | 12 |
Journal | Journal of Colloid and Interface Science |
Volume | 666 |
DOIs | |
State | Published - Jul 15 2024 |
Funding
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences program. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231. This research used resources of the Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725 Note to publisher: This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC0500OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( https://energy.gov/downloads/doe-public-access-plan ).
Keywords
- Acidity constant
- Interface
- Metadynamics
- Molecular dynamics
- Proton transfer
- Quartz