Abstract
Tungsten sputtering rates and density profiles predicted using the edge plasma codes EDGE2D-EIRENE and DIVIMP are found to agree within a factor of 4 with measurements of neutral and singly-ionized W spectral line emission in the JET low-field side (LFS) divertor, and within a factor of 2 with SXR, VUV, and bolometric calculations of the W density in the main plasma. The edge plasma W predictions are extended to the core plasma using JINTRAC integrated core-edge modelling. Prompt redeposition of W is identified as the primary reason for the discrepancy between predicted and measured W emission in the divertor. The studied plasmas include attached divertor conditions in L-mode and type-I ELMy H-mode plasmas typical for JET. To more accurately reproduce the spectroscopically inferred W sputtering rates in EDGE2D-EIRENE, imposing the experimentally observed Be concentration of order 0.5% in the divertor is necessary. However, the W density in the main plasma is predicted to be insensitive to whether or not W is sputtered by Be at the divertor targets. Instead, the majority of the predicted core W originated in L-mode from sputtering due to fast D charge-exchange atoms at the W-coated tiles above the LFS divertor, and in H-mode due to D and W ions at the targets during ELMs.
Original language | English |
---|---|
Article number | 100866 |
Journal | Nuclear Materials and Energy |
Volume | 25 |
DOIs | |
State | Published - Dec 2020 |
Funding
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under grant agreement No 633053 . The views and opinions expressed herein do not necessarily reflect those of the European Commission.
Funders | Funder number |
---|---|
Horizon 2020 Framework Programme | |
H2020 Euratom | 633053 |
Keywords
- Code validation
- Fluid simulation
- Impurity transport
- Joint European Torus
- Scrape-off layer
- Spectroscopy
- Tungsten