Validation of a GE ANT4 simulation of neutron stimulated emission computed tomography

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Neutron stimulated emission computed tomography (NSECT) is being proposed as a non-invasive technique to detect concentrations of elements in the body for diagnosis of liver iron overload. Several experiments have been conducted to investigate NSECT's ability to determine iron concentration in liver tissue and evaluate the accuracy and sensitivity of the system. While these experiments have been successful in demonstrating NSECT's capability of quantifying iron and other tissue elements in-vivo, they have been prohibitively time consuming, often requiring as much as 24 hour acquisitions for accurate quantification. Such extensive scan times limit the use of the experimental system for initial feasibility testing and optimization. As a practical alternative, GEANT4 simulations are being developed to investigate system optimization and aid further progress of the experimental technique. This work presents results of a validation study comparing the results of a GEANT4 simulation with experimental data obtained from a sample of iron. A simulation of the NSECT system is implemented in GEANT4 and used to acquire a spectrum from a simulated iron sample. Scanning is performed with a 7.5 MeV neutron beam to stimulate gamma emission from iron nuclei. The resulting gamma spectrum is acquired and reconstructed using high-purity germanium (HPGe) detectors and analyzed for energy peaks corresponding to iron. The simulated spectrum is compared with a corresponding experimental spectrum acquired with an identical source-detector-sample configuration. Five peaks are detected corresponding to gamma transitions from iron in both spectra with relative errors ranging from 4.5% to 17% for different peaks. The result validates the GEANT4 simulation as a feasible alternative to perform simulated NSECT experiments using only computational resources.

Original languageEnglish
Title of host publicationMedical Imaging 2008 - Physics of Medical Imaging
DOIs
StatePublished - 2008
Externally publishedYes
EventMedical Imaging 2008 - Physics of Medical Imaging - San Diego, CA, United States
Duration: Feb 18 2008Feb 21 2008

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume6913
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2008 - Physics of Medical Imaging
Country/TerritoryUnited States
CitySan Diego, CA
Period02/18/0802/21/08

Keywords

  • GEANT4
  • Gamma
  • Iron-overload
  • NSECT
  • Neutron
  • Simulation
  • Spectroscopy
  • Tomography

Fingerprint

Dive into the research topics of 'Validation of a GE ANT4 simulation of neutron stimulated emission computed tomography'. Together they form a unique fingerprint.

Cite this