TY - GEN
T1 - Utility-scale Building Type Assignment Using Smart Meter Data Building Simulation 2021 Conference
AU - Bass, Brett
AU - New, Joshua
AU - Ezell, Evan
AU - Im, Piljae
AU - Garrison, Eric
AU - Copeland, William
N1 - Publisher Copyright:
© International Building Performance Simulation Association, 2022
PY - 2022
Y1 - 2022
N2 - United States building energy use accounted for 40% of total energy use, 74% of peak demand, and $412 billion in 2019. Building energy modeling allows researchers to simulate building physics, gain insights into possible energy/demand saving opportunities, and assess cost-effective resilience amidst climate change. Many building features needed to create building energy models are readily available such as 2D footprints and LiDAR (height). A critical feature that is not generally obtainable is the building type. In partnership with a utility, a years worth of real-world, 15-minute electrical use data has been examined. The smart meter data is compared to 97 different prototype building energy models to assign building type. Real-world considerations including data preparation, quality assurance, and handling of missing values for advanced metering infrastructure data are addressed. Euclidean distance for pattern-matching of energy use, dynamic time warping, and time-window statistics with machine learning are compared for determining building type from measured electricity use.
AB - United States building energy use accounted for 40% of total energy use, 74% of peak demand, and $412 billion in 2019. Building energy modeling allows researchers to simulate building physics, gain insights into possible energy/demand saving opportunities, and assess cost-effective resilience amidst climate change. Many building features needed to create building energy models are readily available such as 2D footprints and LiDAR (height). A critical feature that is not generally obtainable is the building type. In partnership with a utility, a years worth of real-world, 15-minute electrical use data has been examined. The smart meter data is compared to 97 different prototype building energy models to assign building type. Real-world considerations including data preparation, quality assurance, and handling of missing values for advanced metering infrastructure data are addressed. Euclidean distance for pattern-matching of energy use, dynamic time warping, and time-window statistics with machine learning are compared for determining building type from measured electricity use.
UR - http://www.scopus.com/inward/record.url?scp=85151561884&partnerID=8YFLogxK
U2 - 10.26868/25222708.2021.30655
DO - 10.26868/25222708.2021.30655
M3 - Conference contribution
AN - SCOPUS:85151561884
T3 - Building Simulation Conference Proceedings
SP - 3196
EP - 3205
BT - BS 2021 - Proceedings of Building Simulation 2021
A2 - Saelens, Dirk
A2 - Laverge, Jelle
A2 - Boydens, Wim
A2 - Helsen, Lieve
PB - International Building Performance Simulation Association
T2 - 17th IBPSA Conference on Building Simulation, BS 2021
Y2 - 1 September 2021 through 3 September 2021
ER -