Using in-situ strain measurements to evaluate the accuracy of stress estimation procedures from fracture injection/shut-in tests

The EGS Collab Team

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Fracture injection/shut-in tests are commonly used to measure the state of stress in the subsurface. Injection creates a hydraulic fracture (or in some cases, opens a preexisting fracture), and then the pressure after shut-in is monitored to identify fracture closure. Different interpretation procedures have been proposed for estimating closure, and the procedures sometimes yield significantly different results. In this study, direct, in-situ strain measurements are used to observe fracture reopening and closure. The tests were performed as part of the EGS Collab project, a mesoscale project performed at 1.25 and 1.5 km depth at the Sanford Underground Research Facility. The tests were instrumented with the SIMFIP tool, a double-packer probe with a high-resolution three-dimensional borehole displacement sensor. The measurements provide a direct observation of the fracture closure signature, enabling a high-fidelity estimate of the fracture closure stress (ie, the normal stress on the fracture). In two of the four tests, injection created an opening mode fracture, and so the closure stress can be interpreted as the minimum principal stress. In the other two tests, injection probably opened preexisting natural fractures, and so the closure stress can be interpreted as the normal stress on the fractures. The strain measurements are compared against different proposed methods for estimating closure stress from pressure transients. The shut-in transients are analyzed with two techniques that are widely used in the field of petroleum engineering – the ‘tangent’ method and the ‘compliance’ method. In three of the four tests, the tangent method significantly underestimates the closure stress. The compliance method is reasonably accurate in all four tests. Closure stress is also interpreted using two other commonly-used methods – ‘first deviation from linearity’ and the method of (Hayashi and Haimson, 1991). In comparison with the SIMFIP data, these methods tend to overestimate the closure stress, evidently because they identify closure from early-time transient effects, such as near-wellbore tortuosity. In two of the tests, microseismic imaging provides an independent estimate of the size of the fracture created by injection. When combined with a simple mass balance calculation, the SIMFIP stress measurements yield predictions of fracture size that are reasonably consistent with the estimates from microseismic. The calculations imply an apparent fracture toughness 2-3x higher than typical laboratory-derived values.

Original languageEnglish
Article number105521
JournalInternational Journal of Rock Mechanics and Mining Sciences
Volume170
DOIs
StatePublished - Oct 2023

Funding

This material was based upon work supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), Office of Technology Development, Geothermal Technologies Office, under Award Number DE-AC02-05CH11231 with LBNL, by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and other awards to other national laboratories. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The research supporting this work took place in whole or in part at the Sanford Underground Research Facility in Lead, South Dakota. The assistance of the Sanford Underground Research Facility and its personnel in providing physical access and general logistical and technical support is gratefully acknowledged. Thank you to two anonymous reviewers and the technical editor for their helpful feedback on the manuscript. This material was based upon work supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), Office of Technology Development , Geothermal Technologies Office , under Award Number DE-AC02-05CH11231 with LBNL , by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 , and other awards to other national laboratories. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The research supporting this work took place in whole or in part at the Sanford Underground Research Facility in Lead, South Dakota. The assistance of the Sanford Underground Research Facility and its personnel in providing physical access and general logistical and technical support is gratefully acknowledged. Thank you to two anonymous reviewers and the technical editor for their helpful feedback on the manuscript.

FundersFunder number
United States Government
U.S. Department of Energy
Office of Energy Efficiency and Renewable Energy
Office of Technology Development
Lawrence Livermore National LaboratoryDE-AC52-07NA27344
Lawrence Livermore National Laboratory
Geothermal Technologies OfficeDE-AC02-05CH11231
Geothermal Technologies Office

    Keywords

    • Collab
    • DFIT
    • Minifrac
    • SIMFIP

    Fingerprint

    Dive into the research topics of 'Using in-situ strain measurements to evaluate the accuracy of stress estimation procedures from fracture injection/shut-in tests'. Together they form a unique fingerprint.

    Cite this