Using Image Processing Techniques to Identify and Quantify Spatiotemporal Carbon Cycle Extremes

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Rising atmospheric carbon dioxide due to human activities through fossil fuel emissions and land use changes have increased climate extremes such as heat waves and droughts that have led to and are expected to increase the occurrence of carbon cycle extremes. Carbon cycle extremes represent large anomalies in the carbon cycle that are associated with gains or losses in carbon uptake. Carbon cycle extremes could be continuous in space and time and cross political boundaries. Here, we present a methodology to identify large spatiotemporal extremes (STEs) in the terrestrial carbon cycle using image processing tools for feature detection. We characterized the STE events based on neighborhood structures that are three-dimensional adjacency matrices for the detection of spatiotemporal manifolds of carbon cycle extremes. We found that the area affected and carbon loss during negative carbon cycle extremes were consistent with continuous neighborhood structures. In the gross primary production data we used, 100 carbon cycle STEs accounted for more than 75% of all the negative carbon cycle extremes. This paper presents a comparative analysis of the magnitude of carbon cycle STEs and attribution of those STEs to climate drivers as a function of neighborhood structures for two observational datasets and an Earth system model simulation.

Original languageEnglish
Title of host publicationProceedings - 22nd IEEE International Conference on Data Mining Workshops, ICDMW 2022
EditorsK. Selcuk Candan, Thang N. Dinh, My T. Thai, Takashi Washio
PublisherIEEE Computer Society
Pages1136-1143
Number of pages8
ISBN (Electronic)9798350346091
DOIs
StatePublished - 2022
Event22nd IEEE International Conference on Data Mining Workshops, ICDMW 2022 - Orlando, United States
Duration: Nov 28 2022Dec 1 2022

Publication series

NameIEEE International Conference on Data Mining Workshops, ICDMW
Volume2022-November
ISSN (Print)2375-9232
ISSN (Electronic)2375-9259

Conference

Conference22nd IEEE International Conference on Data Mining Workshops, ICDMW 2022
Country/TerritoryUnited States
CityOrlando
Period11/28/2212/1/22

Funding

This research was supported by the Reducing Uncertainties in Biogeochemical Interactions through Synthesis and Computation (RUBISCO) Science Focus Area, which is sponsored by the Regional and Global Model Analysis (RGMA) activity of the Earth & Environmental Systems Modeling (EESM) Program in the Earth and Environmental Systems Sciences Division (EESSD) of the Office of Biological and Environmental Research (BER) in the US Department of Energy Office of Science. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231 for the Project m2467. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The publisher acknowledges the US government license to provide public access under the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

FundersFunder number
U.S. Department of Energy
Office of Science
Biological and Environmental Research
Lawrence Berkeley National LaboratoryDE-AC05-00OR22725, DE-AC02-05CH11231, m2467

    Keywords

    • attribution analysis
    • carbon cycle extremes
    • climate drivers
    • scale-free networks
    • spatiotemporal extremes

    Fingerprint

    Dive into the research topics of 'Using Image Processing Techniques to Identify and Quantify Spatiotemporal Carbon Cycle Extremes'. Together they form a unique fingerprint.

    Cite this