TY - JOUR
T1 - Using a new finite slit pore model for NLDFT analysis of carbon pore structure
AU - Jagiello, Jacek
AU - Kenvin, Jeffrey
AU - Olivier, James P.
AU - Lupini, Andrew R.
AU - Contescu, Cristian I.
PY - 2011/8/1
Y1 - 2011/8/1
N2 - In this work, we present a model for analyzing activated carbon micropore structures based on graphene sheet walls of finite thickness and extent. This is a two-dimensional modification of the widely used infinite slit pore model that assumes graphite-like infinitely extended pore walls. The proposed model has two versions: (1) a strip pore constructed with graphene strip walls that have a finite length L in the x-direction and are infinite in the y-direction. Strip pores are open on both sides in the x-direction; (2) a channel pore, i.e. a strip pore partially closed along one edge by a perpendicularly orientated graphene wall. This more realistic model allows pore termination via both physical pore entrances and pore blockage. The model consequently introduces heterogeneity of the adsorption potential that is reduced near pore entrances and enhanced near the corners of pore walls. These energetically heterogeneous structures fill with adsorbate more gradually than homogeneous pores of the same width. As a result, the calculated adsorption isotherms are smoother and less steep for the finite versus the infinite pore model. In the application of this model for carbon characterization, it is necessary to make an assumption about the pore length. In this work, we made this assumption based on high-resolution scanning transmission electron microscopy (STEM) results. We find the agreement between the experiment and the model significantly better for the finite than for the infinite pore model.
AB - In this work, we present a model for analyzing activated carbon micropore structures based on graphene sheet walls of finite thickness and extent. This is a two-dimensional modification of the widely used infinite slit pore model that assumes graphite-like infinitely extended pore walls. The proposed model has two versions: (1) a strip pore constructed with graphene strip walls that have a finite length L in the x-direction and are infinite in the y-direction. Strip pores are open on both sides in the x-direction; (2) a channel pore, i.e. a strip pore partially closed along one edge by a perpendicularly orientated graphene wall. This more realistic model allows pore termination via both physical pore entrances and pore blockage. The model consequently introduces heterogeneity of the adsorption potential that is reduced near pore entrances and enhanced near the corners of pore walls. These energetically heterogeneous structures fill with adsorbate more gradually than homogeneous pores of the same width. As a result, the calculated adsorption isotherms are smoother and less steep for the finite versus the infinite pore model. In the application of this model for carbon characterization, it is necessary to make an assumption about the pore length. In this work, we made this assumption based on high-resolution scanning transmission electron microscopy (STEM) results. We find the agreement between the experiment and the model significantly better for the finite than for the infinite pore model.
UR - http://www.scopus.com/inward/record.url?scp=84859019033&partnerID=8YFLogxK
U2 - 10.1260/0263-6174.29.8.769
DO - 10.1260/0263-6174.29.8.769
M3 - Article
AN - SCOPUS:84859019033
SN - 0263-6174
VL - 29
SP - 769
EP - 780
JO - Adsorption Science and Technology
JF - Adsorption Science and Technology
IS - 8
ER -