Use of Bayesian inference in crystallographic structure refinement via full diffraction profile analysis

Chris M. Fancher, Zhen Han, Igor Levin, Katharine Page, Brian J. Reich, Ralph C. Smith, Alyson G. Wilson, Jacob L. Jones

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

A Bayesian inference method for refining crystallographic structures is presented. The distribution of model parameters is stochastically sampled using Markov chain Monte Carlo. Posterior probability distributions are constructed for all model parameters to properly quantify uncertainty by appropriately modeling the heteroskedasticity and correlation of the error structure. The proposed method is demonstrated by analyzing a National Institute of Standards and Technology silicon standard reference material. The results obtained by Bayesian inference are compared with those determined by Rietveld refinement. Posterior probability distributions of model parameters provide both estimates and uncertainties. The new method better estimates the true uncertainties in the model as compared to the Rietveld method.

Original languageEnglish
Article number31625
JournalScientific Reports
Volume6
DOIs
StatePublished - Aug 23 2016
Externally publishedYes

Funding

The authors acknowledge the support of the Kenan Institute for Engineering, Technology and Science at NC State and the Eastman Chemical Company - University Engagement Fund at NC State. JLJ acknowledges support from the National Science Foundation under DMR-1445926. This research used resources of the Advanced Photon Source, a US. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

FundersFunder number
Eastman Chemical Company
National Science FoundationDMR-1445926
U.S. Department of Energy
Directorate for Mathematical and Physical Sciences1445926
Office of Science
Argonne National LaboratoryDE-AC02-06CH11357
Kenan Institute for Engineering, Technology and Science

    Fingerprint

    Dive into the research topics of 'Use of Bayesian inference in crystallographic structure refinement via full diffraction profile analysis'. Together they form a unique fingerprint.

    Cite this