Abstract
Crop yield forecasting is performed monthly during the growing season by the United States Department of Agriculture’s National Agricultural Statistics Service. The underpinnings are long-established probability surveys reliant on farmers’ feedback in parallel with biophysical measurements. Over the last decade though, satellite imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) has been used to corroborate the survey information. This is facilitated through the Global Inventory Modeling and Mapping Studies/Global Agricultural Monitoring system, which provides open access to pertinent real-time normalized difference vegetation index (NDVI) data. Hence, two relatively straightforward MODIS-based modeling methods are employed operationally. The first model constitutes mid-season timing based on the maximum peak NDVI value, while the second is reflective of late-season timing by integrating accumulated NDVI over a threshold value. Corn model results nationally show the peak NDVI method provides a R2 of 0.88 and a coefficient of variation (CV) of 3.5%. The accumulated method, using an optimally derived 0.58 NDVI threshold, improves the performance to 0.93 and 2.7%, respectively. Both these models outperform simple trend analysis, which is 0.48 and 7.4%, correspondingly. For soybeans the R2 results of the peak NDVI model are 0.62, and 0.73 for the accumulated using a 0.56 threshold. CVs are 6.8% and 5.7%, respectively. Spring wheat’s R2 performance with the accumulated NDVI model is 0.60 but just 0.40 with peak NDVI. The soybean and spring wheat models perform similarly to trend analysis. Winter wheat and upland cotton show poor model performance, regardless of method. Ultimately, corn yield forecasting derived from MODIS imagery is robust, and there are circumstances when forecasts for soybeans and spring wheat have merit too.
Original language | English |
---|---|
Article number | 4227 |
Journal | Remote Sensing |
Volume | 13 |
Issue number | 21 |
DOIs | |
State | Published - Nov 1 2021 |
Externally published | Yes |
Funding
Acknowledgments: This research was supported by the intramural research program of the USDA NASS Research and Development Division. The findings and conclusions in this publication have not been formally disseminated by the USDA and should not be construed to represent any agency determination or policy. Internal thanks to Eileen O’Brien, Linda Young, and Joseph Parsons for comments. External thanks to peer-reviewers’ feedback and suggestion. Special thanks to the USDA FAS IPAD for long-term interagency support to the NASA GSFC’s GIMMS group providing MODIS NDVI data processing through the GLAM system as found at https://glam1.gsfc.nasa.gov/, accessed on 18 October 2021. Finally, acknowledgement to the late Paul Doraiswamy who led the initial investigation of MODIS data toward crop yield estimation for NASS.
Keywords
- Corn
- Cotton
- Crop yield
- Forecasting
- MODIS
- Modeling
- NDVI
- Soybeans
- USA
- Wheat