Uranium Single Particle Analysis for Simultaneous Fluorine and Uranium Isotopic Determinations via Laser-Induced Breakdown Spectroscopy/Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry

Benjamin T. Manard, C. Derrick Quarles, Veronica C. Bradley, Tyler L. Spano, N. Alex Zirakparvar, Brian W. Ticknor, Daniel R. Dunlap, Paula Cable-Dunlap, Cole R. Hexel, Hunter B. Andrews

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Uranyl fluoride (UO2F2) particles (<20 μm) were subjected to first-of-its-kind analysis via simultaneous laser-induced breakdown spectroscopy (LIBS) and laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS). Briefly, a nanosecond pulsed high-energy laser was focused onto the sample (particle) surface. In a single laser pulse, the UO2F2 particle was excited/ionized within the microplasma volume, and the emission of light was collected via fiber optics such that emission spectroscopy could be employed for the detection of uranium (U) and fluorine (F). The ablated particle was simultaneously transported into the MC-ICP-MS for high precision isotopic (i.e., 234U, 235U, and 238U) analysis. This method, LIBS/LA-MC-ICP-MS was optimized and employed to rapidly measure 80+ UO2F2 particles, which were subjected to different calcination processes, which results in varying degrees of F loss from the individual particles. In measuring the particles, the average F/U ratios for the populations treated at 100 and 500 °C were 2.78 ± 1.28 and 1.01 ± 0.50, respectively, confirming loss of F through the calcination process. The average 235U/238U on the particle populations for the 100 and 500 °C were 0.007262 (22) and 0.007231 (23), which was determined to be <0.2% from the expected value. The 234U/238U ratios on the same particles were 0.000053 (11) and 0.000050 (10) for the 100 and 500 °C, respectively, <10% from the expected value. Notably, each population was analyzed in under 5 min, demonstrating the truly rapid analysis technique presented here.

Original languageEnglish
Pages (from-to)14856-14863
Number of pages8
JournalJournal of the American Chemical Society
Volume146
Issue number21
DOIs
StatePublished - May 29 2024

Fingerprint

Dive into the research topics of 'Uranium Single Particle Analysis for Simultaneous Fluorine and Uranium Isotopic Determinations via Laser-Induced Breakdown Spectroscopy/Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry'. Together they form a unique fingerprint.

Cite this