Unraveling deterministic mesoscopic polarization switching mechanisms: spatially resolved studies of a tilt grain boundary in bismuth ferrite

Brian J. Rodriguez, Samrat Choudhury, Y. H. Chu, Abhishek Bhattacharyya, Stephen Jesse, Katyayani Seal, Arthur P. Baddorf, R. Ramesh, Long Qing Chen, Sergei V. Kalinin

Research output: Contribution to journalArticlepeer-review

60 Scopus citations

Abstract

The deterministic mesoscopic mechanism of ferroelectric domain nucleation is probed at a single atomically-defined model defect: an artificially fabricated bicrystal grain boundary (GB) in an epitaxial bismuth ferrite film. Switching spectroscopy piezoresponse force microscopy (SS-PFM) is used to map the variation of local hysteresis loops at the GB and in its immediate vicinity. It is found that the the influence of the GB on nucleation results in a slight shift of the negative nucleation bias to larger voltages. The mesoscopic mechanisms of domain nucleation in the bulk and at the GB are studied in detail using phase-field modeling, elucidating the complex mechanisms governed by the interplay between ferroelectric and ferroelastic wall energies, depolarization fields, and interface charge. The combination of phase-field modeling and SS-PFM allows quantitative analysis of the mesoscopic mechanisms for polarization switching, and hence suggests a route for unraveling the mechanisms of polarization switching at a single defect level and ultimately optimizing materials properties through microstructure engineering.

Original languageEnglish
Pages (from-to)2053-2063
Number of pages11
JournalAdvanced Functional Materials
Volume19
Issue number13
DOIs
StatePublished - Jul 10 2009

Fingerprint

Dive into the research topics of 'Unraveling deterministic mesoscopic polarization switching mechanisms: spatially resolved studies of a tilt grain boundary in bismuth ferrite'. Together they form a unique fingerprint.

Cite this