Uniaxial pressure effect on the magnetic ordered moment and transition temperatures in BaFe2-xTxAs2 (T=Co,Ni)

David W. Tam, Yu Song, Haoran Man, Sky C. Cheung, Zhiping Yin, Xingye Lu, Weiyi Wang, Benjamin A. Frandsen, Lian Liu, Zizhou Gong, Takashi U. Ito, Yipeng Cai, Murray N. Wilson, Shengli Guo, Keisuke Koshiishi, Wei Tian, Bassam Hitti, Alexandre Ivanov, Yang Zhao, Jeffrey W. LynnGraeme M. Luke, Tom Berlijn, Thomas A. Maier, Yasutomo J. Uemura, Pengcheng Dai

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

We use neutron diffraction and muon spin relaxation to study the effect of in-plane uniaxial pressure on the antiferromagnetic (AF) orthorhombic phase in BaFe2As2 and its Co- and Ni-substituted members near optimal superconductivity. In the low-temperature AF ordered state, uniaxial pressure necessary to detwin the orthorhombic crystals also increases the magnetic ordered moment, reaching an 11% increase under 40 MPa for BaFe1.9Co0.1As2, and a 15% increase for BaFe1.915Ni0.085As2. We also observe an increase of the AF ordering temperature (TN) of about 0.25 K/MPa in all compounds, consistent with density functional theory calculations that reveal better Fermi surface nesting for itinerant electrons under uniaxial pressure. The doping dependence of the magnetic ordered moment is captured by combining dynamical mean field theory with density functional theory, suggesting that the pressure-induced moment increase near optimal superconductivity is closely related to quantum fluctuations and the nearby electronic nematic phase.

Original languageEnglish
Article number060505
JournalPhysical Review B
Volume95
Issue number6
DOIs
StatePublished - Feb 17 2017

Fingerprint

Dive into the research topics of 'Uniaxial pressure effect on the magnetic ordered moment and transition temperatures in BaFe2-xTxAs2 (T=Co,Ni)'. Together they form a unique fingerprint.

Cite this