Abstract
Redoxmers are redox-active molecules that can store energy in electrolytes for redox flow batteries (RFBs), and their electrochemical properties are significantly affected by the choice of supporting electrolytes. Herein, we use 2,1,3-benzothiadiazole (BzNSN) as a model system to scrutinize the supporting electrolyte impact. By systemically varying the components of supporting salts, BzNSN not only shows substantial redox potential shifts but also exhibits varying electrochemical stabilities. Specifically, changing the size of cations can effectively alter the coordination between the supporting salt and BzNSN species. From Li+, Na+, K+, to NEt4+, the redox potential of BzNSN shifts negatively, from -1.63 V to -1.82 V vs. Ag/Ag+. Molecular dynamics and density functional theory simulations revealed that smaller cations, like Li+, are closer to the charged BzNSN when coordinated, implying stronger coordination, while larger cations, like K+ and NEt4+, are farther away. Interestingly, the large cation electrolytes also lead to much improved electrochemical stability, evidenced by the extraordinarily enhanced kinetic lifetime from electron paramagnetic resonance measurement. This study demonstrates the first example of tuning an anolyte redoxmer toward a concurrent improvement of lowered redox potentials AND enhanced calendar lives via solvation means, which is usually constrained by the thermodynamic-kinetic relation.
Original language | English |
---|---|
Pages (from-to) | 13470-13479 |
Number of pages | 10 |
Journal | Journal of Materials Chemistry A |
Volume | 8 |
Issue number | 27 |
DOIs | |
State | Published - Jul 21 2020 |
Funding
This research was nancially supported by the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, and Basic Energy Sciences. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This work is also supported by Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. We thank the Laboratory Computing Resource Center at Argonne National Laboratory for the generous allocation of computing time on the Bebop cluster.