Abstract
Evolutionary optimization or genetic algorithms have been used to optimize a variety of neural network types, including spiking recurrent neural networks, and are attractive for many reasons. However, a key impediment to their widespread use is the potential for slow training times and failure to converge to a good fitness value in a reasonable amount of time. In this work, we evaluate the effect of different selection algorithms on the performance of an evolutionary optimization method for designing spiking recurrent neural networks, including those that are meant to be deployed in a neuromorphic system. We propose a selection approach that utilizes a richer understanding of the fitness of an individual network to inform the selection process and to promote diversity in the population. We show that including this feature can provide a significant increase in performance over utilizing a standard selection approach.
Original language | English |
---|---|
Title of host publication | 2018 International Joint Conference on Neural Networks, IJCNN 2018 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781509060146 |
DOIs | |
State | Published - Oct 10 2018 |
Externally published | Yes |
Event | 2018 International Joint Conference on Neural Networks, IJCNN 2018 - Rio de Janeiro, Brazil Duration: Jul 8 2018 → Jul 13 2018 |
Publication series
Name | Proceedings of the International Joint Conference on Neural Networks |
---|---|
Volume | 2018-July |
Conference
Conference | 2018 International Joint Conference on Neural Networks, IJCNN 2018 |
---|---|
Country/Territory | Brazil |
City | Rio de Janeiro |
Period | 07/8/18 → 07/13/18 |
Funding
Notice: This manuscript has been authored in part by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).