Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions

D. N. Huntzinger, A. M. Michalak, C. Schwalm, P. Ciais, A. W. King, Y. Fang, K. Schaefer, Y. Wei, R. B. Cook, J. B. Fisher, D. Hayes, M. Huang, A. Ito, A. K. Jain, H. Lei, C. Lu, F. Maignan, J. Mao, N. Parazoo, S. PengB. Poulter, D. Ricciuto, X. Shi, H. Tian, W. Wang, N. Zeng, F. Zhao

Research output: Contribution to journalArticlepeer-review

171 Scopus citations

Abstract

Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO2 which shows almost twice the variability in cumulative land uptake since 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.

Original languageEnglish
Article number4765
JournalScientific Reports
Volume7
Issue number1
DOIs
StatePublished - Dec 1 2017

Funding

For the Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP; http://nacp.ornl.gov/MsTMIP.shtml) activity was provided through NASA ROSES Grant #NNX10AG01A. Data management support for preparing, documenting, and distributing model driver and output data was performed by the Modeling and Synthesis Thematic Data Center at Oak Ridge National Laboratory (ORNL; http://nacp.ornl.gov), with funding through NASA ROSES Grant #NNH10AN681. Finalized MsTMIP data products are archived at the ORNL DAAC (http://daac.ornl.gov). We also acknowledge the modeling groups that provided results to MsTMIP. JBF contributed to this paper from the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the NASA. This is MsTMIP contribution #9.

FundersFunder number
ORNL DAAC
National Aeronautics and Space Administration10AG01A
Oak Ridge National Laboratory10AN681

    Fingerprint

    Dive into the research topics of 'Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions'. Together they form a unique fingerprint.

    Cite this