Unbiased simulation of near-Clifford quantum circuits

Ryan S. Bennink, Erik M. Ferragut, Travis S. Humble, Jason A. Laska, James J. Nutaro, Mark G. Pleszkoch, Raphael C. Pooser

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

Modeling and simulation are essential for predicting and verifying the behavior of fabricated quantum circuits, but existing simulation methods are either impractically costly or require an unrealistic simplification of error processes. We present a method of simulating noisy Clifford circuits that is both accurate and practical in experimentally relevant regimes. In particular, the cost is weakly exponential in the size and the degree of non-Cliffordness of the circuit. Our approach is based on the construction of exact representations of quantum channels as quasiprobability distributions over stabilizer operations, which are then sampled, simulated, and weighted to yield unbiased statistical estimates of circuit outputs and other observables. As a demonstration of these techniques, we simulate a Steane [[7,1,3]]-encoded logical operation with non-Clifford errors and compute its fault tolerance error threshold. We expect that the method presented here will enable studies of much larger and more realistic quantum circuits than was previously possible.

Original languageEnglish
Article number062337
JournalPhysical Review A
Volume95
Issue number6
DOIs
StatePublished - Jun 28 2017

Fingerprint

Dive into the research topics of 'Unbiased simulation of near-Clifford quantum circuits'. Together they form a unique fingerprint.

Cite this