Abstract
With the advanced progress achieved in the field of nanotechnology, localized surface plasmon resonances are actively considered to improve the efficiency of metal-based photocatalysis, photodetection, and photovoltaics. Here, we report on the exchange of energy and electric charges in a hybrid composed of a two-dimensional tungsten disulfide (2D-WS2) monolayer and an array of aluminum (Al) nanodisks. Femtosecond pump-probe spectroscopy results indicate that within ∼830 fs after photoexcitation of the 2D-WS2 semiconductor energy transfer from the 2D-WS2 excitons excites the plasmons of the Al array. Then, upon the radiative and/or nonradiative damping of these excited plasmons, energy and/or electron transfer back to the 2D-WS2 semiconductor takes place as indicated by an increase in the reflected probe at the 2D-exciton transition energies at later time delays. This simultaneous exchange of energy and charges between the metal and the 2D-WS2 semiconductor resulted in an extension of the average lifetime of the 2D-excitons from ∼15 ps to ∼58 ps in the absence and presence of the Al array, respectively. Furthermore, the indirectly excited plasmons were found to live as long as the 2D-WS2 excitons exist. The demonstrated ability to generate exciton-plasmon coupling in a hybrid nanostructure may open new opportunities for optoelectronic applications such as plasmonic-based photodetection and photocatalysis.
Original language | English |
---|---|
Pages (from-to) | 2389-2395 |
Number of pages | 7 |
Journal | ACS Photonics |
Volume | 3 |
Issue number | 12 |
DOIs | |
State | Published - Dec 21 2016 |
Funding
This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. Synthesis of the two-dimensional materials was supported by the Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. The authors thank Dr. Benjamin Lawrie from the Computa- tional Sciences and Engineering Division at ORNL for the fruitful discussions.
Funders | Funder number |
---|---|
U.S. Department of Energy | |
Office of Science | |
Basic Energy Sciences | |
Oak Ridge National Laboratory | |
Division of Materials Sciences and Engineering |
Keywords
- 2D materials
- energy transfer
- excitons
- hot electrons
- plasmons
- ultrafast