Abstract
Twisted bilayer graphene (tBLG) with small twist angles has attracted significant attention because of its unique electronic properties arising from the formation of a moiré superlattice. In this study, we systematically characterized the twist-angle-dependent electronic and transport properties of tBLG grown via chemical vapor deposition. This characterization included parameters such as the charge-neutral point voltage, carrier concentration, resistance, and mobility, covering a wide range of twist angles from 0° to 30°. We experimentally demonstrated that these parameters exhibited twist-angle-dependent moiré period trends, with high twist angles exceeding 9°, revealing more practically useful features, including improved mobilities compared to those of single-layer graphene. In addition, we demonstrated that the doping states and work functions were weakly dependent on the twist angles, as confirmed by additional first-principles calculations. This study provides valuable insights into the transport properties of tBLG and its potential for practical applications in the emerging field of twistronics.
Original language | English |
---|---|
Article number | 36 |
Journal | NPG Asia Materials |
Volume | 16 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2024 |