Turbulent mixing and afterburn in post-detonation flow with dense particle clouds

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Augmentation of the impact of an explosive is routinely achieved by packing metal particles in the explosive charge. When detonated, the particles in the charge are ejected and dispersed. The ejecta influences the post-detonation combustion processes that bolster the blast wave and determines the total impact of the explosive. While the classical Eulerian-Lagrangian (EL) methods can accurately handle the post-detonation mixing zone in the dilute regime, the Eulerian-Eulerian (EE) method is preferred for the initial dense clustering. Here, we summarize the results obtained using both EL and EE methods as well as demonstrate a new hybrid EE-EL approach. The EL method, which is also developed to handle both dense and dilute flows using the discrete equation method, is used initially to study the dispersion of a relatively dense particle shell by blast waves. The results show distinct clustering of particles that later leads to the formation of jet-like structures as seen in experiments. Then, the hybrid EE-EL method is used to study the dispersion of dense clouds from explosives packed with aluminum (reactive) or steel (inert) particles. A transitioning criterion is used to smoothly transfer the initially dense Eulerian mass to Lagrangian particles when dilute. Results are presented to demonstrate that the approach is computationally efficient and accurate for certain ranges of particle sizes and loading. It is shown that mixing between the ambient and post-detonation products can be enhanced when particles are present in the flow. Furthermore, the afterburn of aluminum particles increases in the average gas-phase temperature by 100 K - 200 K when compared to a case with non-reacting particles. More studies are still needed to establish a robust strategy for wider applications.

Original languageEnglish
Title of host publicationShock Compression of Condensed Matter - 2015
Subtitle of host publicationProceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter
EditorsRamon Ravelo, Thomas Sewell, Ricky Chau, Timothy Germann, Ivan I. Oleynik, Suhithi Peiris
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735414570
DOIs
StatePublished - Jan 13 2017
Externally publishedYes
Event19th Biennial American Physical Society Conference on Shock Compression of Condensed Matter, SCCM 2015 - Tampa, United States
Duration: Jun 14 2015Jun 19 2015

Publication series

NameAIP Conference Proceedings
Volume1793
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference19th Biennial American Physical Society Conference on Shock Compression of Condensed Matter, SCCM 2015
Country/TerritoryUnited States
CityTampa
Period06/14/1506/19/15

Funding

This work is supported by the Defense Threat Reduction Agency (Dr. S. Peiris, Program Manager). The computational resources were provided by the Navy DoD Supercomputing Resource Center (DSRC).

FundersFunder number
DSRC
Navy DoD Supercomputing Resource Center
Defense Threat Reduction Agency

    Fingerprint

    Dive into the research topics of 'Turbulent mixing and afterburn in post-detonation flow with dense particle clouds'. Together they form a unique fingerprint.

    Cite this