Abstract
The complexation of trivalent lanthanides and minor actinides (Am3+, Cm3+, and Cf3+) by the acyclic aminopolycarboxylate chelators 6,6′-((ethane-1,2-diylbis–((carboxymethyl)azanediyl))bis–(methylene))dipicolinic acid (H4octapa) and 6,6'-((((4-(1-(2-(2-(2-hydroxyethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)pyridine-2,6-diyl)bis–(methylene))bis–((carboxymethyl)azanediyl))bis–(methylene)) dipicolinic acid (H4pypa-peg) were studied using potentiometry, spectroscopy, competitive complexation liquid–liquid extraction, and ab initio molecular dynamics simulations. Two studied reagents are strong multidentate chelators, well-suited for applications seeking radiometal coordination for in-vivo delivery and f-element isolation. The previously reported H4octapa forms a compact coordination packet, while H4pypa-peg is less sterically constrained due to the presence of central pyridine ring. The solubility of H4octapa is limited in a non-complexing high ionic strength perchlorate media. However, the introduction of a polyethylene glycol group in H4pypa-peg increased the solubility without influencing its ability to complex the lanthanides and minor actinides in solution.
Original language | English |
---|---|
Article number | 17855 |
Journal | Scientific Reports |
Volume | 13 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2023 |
Funding
The experimental work conducted by CDP, TSG, CS, CRH, and PRZ at the Idaho National Laboratory was supported by the Nuclear Technology Research and Development Program, Office of Nuclear Energy, DOE Idaho Operations Office, under contract DE-AC07-05ID14517. The synthetic work by JM and SJ-P and the computational studies by DR, SR and VSB were supported by the Nuclear Technology Research and Development Program, Office of Nuclear Energy, U.S. Department of Energy. This research used resources of the Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory and the National Energy Research Scientific Computing Center (NERSC), which are supported by the Office of Science of the U.S. Department of Energy under Contracts No. DE-AC05-00OR22725 and No. DE-AC02-05CH11231, respectively. The authors would like to thank Thomas Albrecht-Schönzart and Florida State University for providing access to Cf-249.