Tunable quadruple-well ferroelectric van der Waals crystals

John A. Brehm, Sabine M. Neumayer, Lei Tao, Andrew O’Hara, Marius Chyasnavichus, Michael A. Susner, Michael A. McGuire, Sergei V. Kalinin, Stephen Jesse, Panchapakesan Ganesh, Sokrates T. Pantelides, Petro Maksymovych, Nina Balke

Research output: Contribution to journalArticlepeer-review

170 Scopus citations

Abstract

The family of layered thio- and seleno-phosphates has gained attention as potential control dielectrics for the rapidly growing family of two-dimensional and quasi-two-dimensional electronic materials. Here we report a combination of density functional theory calculations, quantum molecular dynamics simulations and variable-temperature, -pressure and -bias piezoresponse force microscopy data to predict and verify the existence of an unusual ferroelectric property—a uniaxial quadruple potential well for Cu displacements—enabled by the van der Waals gap in copper indium thiophosphate (CuInP2S6). The calculated potential energy landscape for Cu displacements is strongly influenced by strain, accounting for the origin of the negative piezoelectric coefficient and rendering CuInP2S6 a rare example of a uniaxial multi-well ferroelectric. Experimental data verify the coexistence of four polarization states and explore the temperature-, pressure- and bias-dependent piezoelectric and ferroelectric properties, which are supported by bias-dependent molecular dynamics simulations. These phenomena offer new opportunities for both fundamental studies and applications in data storage and electronics.

Original languageEnglish
Pages (from-to)43-48
Number of pages6
JournalNature Materials
Volume19
Issue number1
DOIs
StatePublished - Jan 1 2020

Funding

The experimental work, including part of the data analysis and interpretation, was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Theory was supported by the US Department of Energy (grant no. DE-FG02-09ER46554) and by the McMinn Endowment at Vanderbilt University. The experiments were conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility that also provided support with data collection and interpretation. Partial support for sample synthesis, experiments and theory was provided by the Laboratory Directed Research and Development program at the Oak Ridge National Laboratory. Calculations were performed at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231. Manuscript preparation was partially funded by the Air Force Research Laboratory under an Air Force Office of Scientific Research grant (LRIR grant no. 14RQ08COR) and a grant from the National Research Council.

FundersFunder number
DOE Office of Science
LRIR14RQ08COR
National Energy Research Scientific Computing Center
US Department of Energy
U.S. Department of Energy
Air Force Office of Scientific Research
Office of Science
Basic Energy Sciences
Oak Ridge National Laboratory
Vanderbilt University
Air Force Research Laboratory
Division of Materials Sciences and Engineering
National Research Council

    Fingerprint

    Dive into the research topics of 'Tunable quadruple-well ferroelectric van der Waals crystals'. Together they form a unique fingerprint.

    Cite this