Transport and turbulence studies in the linear ohmic confinement regime in Alcator C-Mod

M. Porkolab, J. Dorris, P. Ennever, C. Fiore, M. Greenwald, A. Hubbard, Y. Ma, E. Marmar, Y. Podpaly, M. L. Reinke, J. E. Rice, J. C. Rost, N. Tsujii, D. Ernst, J. Candy, G. M. Staebler, R. E. Waltz

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Transport in ohmically heated plasmas in Alcator C-Mod was studied in both the linear (LOC) and saturated (SOC) ohmic L-mode confinement regimes and the importance of turbulent transport in the region r/a = 0.5-0.8 was established. After an extensive analysis with TGLF and GYRO, it is found that using an effective impurity ion species with Zi = 8, and moderately high Zeff (2.0-5.6), in the LOC regime electron transport becomes dominant due to TEM turbulence. The key ingredient in the present results is the observation that dilution of the main ion species (deuterium) by impurity species of moderate charge state reduces dominant ITG turbulence, in contrast to the SOC regime with little, if any dilution. The turbulent spectrum measured with the phase contrast imaging (PCI) diagnostic is in qualitative agreement with predictions of a synthetic PCI diagnostic adopted to Global GYRO. The toroidal rotation in the low-density LOC regime is in the co-current direction but as the density is raised in the SOC regime the rotation reverses to the counter current drive direction. The impurity content of the plasma was measured recently and an effective Zi of 9 was deduced.

Original languageEnglish
Article number124029
JournalPlasma Physics and Controlled Fusion
Volume54
Issue number12
DOIs
StatePublished - Dec 2012
Externally publishedYes

Fingerprint

Dive into the research topics of 'Transport and turbulence studies in the linear ohmic confinement regime in Alcator C-Mod'. Together they form a unique fingerprint.

Cite this