Transport and confinement in the Mega Ampère Spherical Tokamak (MAST) plasma

R. J. Akers, J. W. Ahn, G. Y. Antar, L. C. Appel, D. Applegate, C. Brickley, C. Bunting, P. G. Carolan, C. D. Challis, N. J. Conway, G. F. Counsell, R. O. Dendy, B. Dudson, A. R. Field, A. Kirk, B. Lloyd, H. F. Meyer, A. W. Morris, A. Patel, C. M. RoachV. Rohzansky, A. Sykes, D. Taylor, M. R. Tournianski, M. Valovič, H. R. Wilson, K. B. Axon, R. J. Buttery, D. Cirie, G. Cunningham, J. Dowling, M. R. Dunstan, S. J. Gee, M. P. Gryaznevich, P. Helander, D. L. Keeling, P. J. Knight, F. Lott, M. J. Loughlin, S. J. Manhood, R. Martin, G. J. McArdle, M. N. Price, K. Stammers, J. Storrs, M. J. Walsh

Research output: Contribution to journalArticlepeer-review

78 Scopus citations

Abstract

The spherical tokamak (ST), as well as being able to access high β, exhibits conventional tokamak-like confinement. START, GLOBUS, NSTX and MAST all demonstrate confinement in good agreement with the international scaling laws. This paper presents a summary of work over the last year dedicated to understanding the confinement and, for the first time, transport properties, in both the core and the edge, of the low collisionality, high β MAST plasma.

Original languageEnglish
Pages (from-to)A175-A204
JournalPlasma Physics and Controlled Fusion
Volume45
Issue number12 A
DOIs
StatePublished - Dec 2003
Externally publishedYes

Fingerprint

Dive into the research topics of 'Transport and confinement in the Mega Ampère Spherical Tokamak (MAST) plasma'. Together they form a unique fingerprint.

Cite this