Transport and biogeochemical reaction of metals in a physically and chemically heterogeneous aquifer

Timothy D. Scheibe, Yilin Fang, Christopher J. Murray, Eric E. Roden, Jinsong Chen, Yi Ju Chien, Scott C. Brooks, Susan S. Hubbard

Research output: Contribution to journalArticlepeer-review

58 Scopus citations

Abstract

Biologically mediated reductive dissolution and precipitation of metals and radionuclides play key roles in their subsurface transport. Physical and chemical properties of natural aquifer systems, such as reactive iron-oxide surface area and hydraulic conductivity, are often highly heterogeneous in complex ways that can exert significant control on transport, natural attenuation, and active remediation processes. Typically, however, few data on the detailed distribution of these properties are available for incorporation into predictive models. In this study, we integrate field-scale geophysical, hydrologic, and geochemical data from a well-characterized site with the results of laboratory batch-reaction studies to formulate two-dimensional numerical models of reactive transport in a heterogeneous granular aquifer. The models incorporate several levels of coupling, including effects of ferrous iron sorption onto (and associated reduction of reactive surface area of) ferric iron surfaces, microbial growth and transport dynamics, and cross-correlation between hydraulic conductivity and initial ferric iron surface area. These models are then used to evaluate the impacts of physical and chemical heterogeneity on transport of trace levels of uranium under natural conditions, as well as the effectiveness of uranium reduction and immobilization upon introduction of a soluble electron donor (a potential biostimulation remedial strategy).

Original languageEnglish
Pages (from-to)220-235
Number of pages16
JournalGeosphere
Volume2
Issue number4
DOIs
StatePublished - 2006

Keywords

  • Groundwater
  • Heterogeneity
  • Modeling
  • Reactive transport
  • Uranium

Fingerprint

Dive into the research topics of 'Transport and biogeochemical reaction of metals in a physically and chemically heterogeneous aquifer'. Together they form a unique fingerprint.

Cite this