Transgenic switchgrass (Panicum virgatum L.) targeted for reduced recalcitrance to bioconversion: a 2-year comparative analysis of field-grown lines modified for target gene or genetic element expression

Alexandru Dumitrache, Jace Natzke, Miguel Rodriguez, Kelsey L. Yee, Olivia A. Thompson, Charleson R. Poovaiah, Hui Shen, Mitra Mazarei, Holly L. Baxter, Chunxiang Fu, Zeng Yu Wang, Ajaya K. Biswal, Guifen Li, Avinash C. Srivastava, Yuhong Tang, Charles Neal Stewart, Richard A. Dixon, Richard S. Nelson, Debra Mohnen, Jonathan MielenzSteven D. Brown, Brian H. Davison

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Transgenic Panicum virgatum L. silencing (KD) or overexpressing (OE) specific genes or a small RNA (GAUT4-KD, miRNA156-OE, MYB4-OE, COMT-KD and FPGS-KD) was grown in the field and aerial tissue analysed for biofuel production traits. Clones representing independent transgenic lines were established and senesced tissue was sampled after year 1 and 2 growth cycles. Biomass was analysed for wall sugars, recalcitrance to enzymatic digestibility and biofuel production using separate hydrolysis and fermentation. No correlation was found between plant carbohydrate content and biofuel production pointing to overriding structural and compositional elements that influence recalcitrance. Biomass yields were greater for all lines in the second year as plants establish in the field and standard amounts of biomass analysed from each line had more glucan, xylan and less ethanol (g/g basis) in the second- versus the first-year samples, pointing to a broad increase in tissue recalcitrance after regrowth from the perennial root. However, biomass from second-year growth of transgenics targeted for wall modification, GAUT4-KD, MYB4-OE, COMT-KD and FPGS-KD, had increased carbohydrate and ethanol yields (up to 12% and 21%, respectively) compared with control samples. The parental plant lines were found to have a significant impact on recalcitrance which can be exploited in future strategies. This summarizes progress towards generating next-generation bio-feedstocks with improved properties for microbial and enzymatic deconstruction, while providing a comprehensive quantitative analysis for the bioconversion of multiple plant lines in five transgenic strategies.

Original languageEnglish
Pages (from-to)688-697
Number of pages10
JournalPlant Biotechnology Journal
Volume15
Issue number6
DOIs
StatePublished - Jun 2017

Keywords

  • bioconversion
  • bioenergy
  • comparison
  • recalcitrance
  • switchgrass
  • transgenic

Fingerprint

Dive into the research topics of 'Transgenic switchgrass (Panicum virgatum L.) targeted for reduced recalcitrance to bioconversion: a 2-year comparative analysis of field-grown lines modified for target gene or genetic element expression'. Together they form a unique fingerprint.

Cite this