Abstract
Extrusion based big area additive manufacturing (BAAM) has been previously demonstrated for the fabrication of dense anisotropic bonded magnets. This paper reports on design trade-offs when such magnets are employed in a motor designed for electric vehicle applications. An external rotor fractional slot permanent magnet synchronous machine designed with sintered dysprosium free magnets rated for 100kW peak and 50kW continuous power is used as the baseline. The impact of using the bonded BAAM magnets on the motor and inverter volumes, motor loss and cooling systems as well as demagnetization margins is evaluated. It is found that although the motor power density reduces due to the lower energy product of the BAAM magnets, there are other system level benefits including reductions in the cooling system requirement, lower inverter rating and volume, decrease in short circuit current and improved demagnetization marains.
Original language | English |
---|---|
Title of host publication | 2023 IEEE Transportation Electrification Conference and Expo, ITEC 2023 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9798350397420 |
DOIs | |
State | Published - 2023 |
Event | 2023 IEEE Transportation Electrification Conference and Expo, ITEC 2023 - Detroit, United States Duration: Jun 21 2023 → Jun 23 2023 |
Publication series
Name | 2023 IEEE Transportation Electrification Conference and Expo, ITEC 2023 |
---|
Conference
Conference | 2023 IEEE Transportation Electrification Conference and Expo, ITEC 2023 |
---|---|
Country/Territory | United States |
City | Detroit |
Period | 06/21/23 → 06/23/23 |
Funding
ACKNOWLEDGMENT This work was supported by the Critical Materials Institute (CMI), an Energy Innovation Hub funded by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Advanced Materials and Manufacturing Technologies Office.. This manuscript has been authored by UT-Battelle LLC under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan)
Keywords
- Permanent magnet motors
- additive manufacturing