TY - GEN
T1 - Tracking of a target payload via a combination of input shaping, zero phase error tracking control, and fuzzy logic
AU - Schmidt, Robert
AU - Begneaud, Matthew
AU - Vaughan, Joshua
N1 - Publisher Copyright:
Copyright © 2016 by ASME.
PY - 2016
Y1 - 2016
N2 - During crane operation, the task of retrieval and deployment of payloads can be partitioned into two components: the initial move towards the target or deployment location and the retrieval or deployment of the payload. If the payload is not stationary, as is the case in the retrieval of a sea-going vessel, a third component, tracking, must be included. The target payload in this research is an Autonomous Surface Vehicle (ASV) primarily used for surveying. This paper studies the transition between the initial move towards the payload and the initialization of tracking. Input Shaping is used to limit residual vibration caused by the initial move to the ASV. A set of Fuzzy Logic membership functions are then used to transition from the initial move to the tracking portion of the retrieval process. These membership functions map position and velocity error to a gain that is applied to the tracking controller. As the gain increases, the contribution of the tracking controller input is increased. Zero Phase Error Tracking Control is utilized for accurate tracking of the target payload. Through a combination of these control methods, the tracking accuracy is improved.
AB - During crane operation, the task of retrieval and deployment of payloads can be partitioned into two components: the initial move towards the target or deployment location and the retrieval or deployment of the payload. If the payload is not stationary, as is the case in the retrieval of a sea-going vessel, a third component, tracking, must be included. The target payload in this research is an Autonomous Surface Vehicle (ASV) primarily used for surveying. This paper studies the transition between the initial move towards the payload and the initialization of tracking. Input Shaping is used to limit residual vibration caused by the initial move to the ASV. A set of Fuzzy Logic membership functions are then used to transition from the initial move to the tracking portion of the retrieval process. These membership functions map position and velocity error to a gain that is applied to the tracking controller. As the gain increases, the contribution of the tracking controller input is increased. Zero Phase Error Tracking Control is utilized for accurate tracking of the target payload. Through a combination of these control methods, the tracking accuracy is improved.
UR - http://www.scopus.com/inward/record.url?scp=85015653640&partnerID=8YFLogxK
U2 - 10.1115/DSCC2016-9890
DO - 10.1115/DSCC2016-9890
M3 - Conference contribution
AN - SCOPUS:85015653640
T3 - ASME 2016 Dynamic Systems and Control Conference, DSCC 2016
BT - Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
PB - American Society of Mechanical Engineers
T2 - ASME 2016 Dynamic Systems and Control Conference, DSCC 2016
Y2 - 12 October 2016 through 14 October 2016
ER -