Towards misregistration-tolerant change detection using deep learning techniques with object-based image analysis

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

Co-registrating is a common pre-processing step for existing change detection algorithms, but registering bi-temporal images is nontrivial. The use of image patch as input for deep learning techniques provides a natural avenue to apply them in the OBIA framework, and have shown successful performance in the object-based land cover mapping and change detection applications. Even though attempts of applying deep learning techniques for change detection applications have been made with varying success, its application under OBIA framework for change detection have not been conducted and its tolerance for misregistration among temporal images are neither known. This study performed change detection under OBIA framework using deep learning techniques for the first time, and evaluated its performance regarding their tolerance of image misregistration on training and testing dataset. Our results demonstrate the proposed change detection scheme is surprisingly robust to image misregistration on the testing dataset, while classifiers trained with the training dataset containing image misregistration errors suffer from slight decrease of overall accuracy.

Original languageEnglish
Title of host publication27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2019
EditorsFarnoush Banaei-Kashani, Goce Trajcevski, Ralf Hartmut Guting, Lars Kulik, Shawn Newsam
PublisherAssociation for Computing Machinery
Pages420-423
Number of pages4
ISBN (Electronic)9781450369091
DOIs
StatePublished - Nov 5 2019
Event27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2019 - Chicago, United States
Duration: Nov 5 2019Nov 8 2019

Publication series

NameGIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems

Conference

Conference27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2019
Country/TerritoryUnited States
CityChicago
Period11/5/1911/8/19

Funding

This manuscript has been authored by UT-Battelle, LLC under Contract No.DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paidup, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan.

FundersFunder number
UT-BattelleNo.DE-AC05-00OR22725
U.S. Department of Energy

    Keywords

    • Change detection
    • Convolutional neural network
    • Deep learning
    • Image misregistration
    • LSTM
    • OBIA

    Fingerprint

    Dive into the research topics of 'Towards misregistration-tolerant change detection using deep learning techniques with object-based image analysis'. Together they form a unique fingerprint.

    Cite this