Towards a Software Development Framework for Interconnected Science Ecosystems

Addi Malviya Thakur, Seth Hitefield, Marshall McDonnell, Matthew Wolf, Richard Archibald, Lance Drane, Kevin Roccapriore, Maxim Ziatdinov, Jesse McGaha, Robert Smith, John Hetrick, Mark Abraham, Sergey Yakubov, Greg Watson, Ben Chance, Clara Nguyen, Matthew Baker, Robert Michael, Elke Arenholz, Ben Mintz

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The innovative science of the future must be multi-domain and interconnected to usher in the next generation of “self-driving” laboratories enabling consequential discoveries and transformative inventions. Such a disparate and interconnected ecosystem of scientific instruments will need to evolve using a system-of-systems (SoS) approach. The key to enabling application integration with such an SoS will be the use of Software Development Kits (SDKs). Currently, SDKs facilitate scientific research breakthroughs via algorithmic automation, databases and storage, optimization and structure, pervasive environmental monitoring, among others. However, existing SDKs lack instrument-interoperability and reusability capabilities, do not effectively work in an open federated architectural environment, and are largely isolated within silos of the respective scientific disciplines. Inspired by the scalable SoS framework, this work proposes the development of INTERSECT-SDK to provide a coherent environment for multi-domain scientific applications to benefit from the open federated architecture in an interconnected ecosystem of instruments. This approach will decompose functionality into loosely coupled software services for interoperability among several solutions that do not scale beyond a single domain and/or application. Furthermore, the proposed environment will allow operational and managerial inter-dependence while providing opportunities for the researchers to reuse software components from other domains and build universal solution libraries. We demonstrate this research for microscopy use-case, where we show how INTERSECT-SDK is developing the tools necessary to enable advanced scanning methods and accelerate scientific discovery.

Original languageEnglish
Title of host publicationAccelerating Science and Engineering Discoveries Through Integrated Research Infrastructure for Experiment, Big Data, Modeling and Simulation - 22nd Smoky Mountains Computational Sciences and Engineering Conference, SMC 2022, Revised Selected Papers
EditorsKothe Doug, Geist Al, Swaroop Pophale, Hong Liu, Suzanne Parete-Koon
PublisherSpringer Science and Business Media Deutschland GmbH
Pages206-224
Number of pages19
ISBN (Print)9783031236051
DOIs
StatePublished - 2022
EventSmoky Mountains Computational Sciences and Engineering Conference, SMC 2022 - Virtual, Online
Duration: Aug 24 2022Aug 25 2022

Publication series

NameCommunications in Computer and Information Science
Volume1690 CCIS
ISSN (Print)1865-0929
ISSN (Electronic)1865-0937

Conference

ConferenceSmoky Mountains Computational Sciences and Engineering Conference, SMC 2022
CityVirtual, Online
Period08/24/2208/25/22

Funding

Acknowledgement. This manuscript has been authored by UT-Battelle, LLC under Contract No. DEAC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access.

FundersFunder number
U.S. Department of Energy

    Keywords

    • Autonomous experiments
    • DevSecOps
    • Digital twins
    • Edge computing
    • Federated instruments
    • Interconnected science
    • Research infrastructure
    • SDK
    • Scientific software
    • Scientific workflows

    Fingerprint

    Dive into the research topics of 'Towards a Software Development Framework for Interconnected Science Ecosystems'. Together they form a unique fingerprint.

    Cite this