Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

Jianlin Li, Zhijia Du, Rose E. Ruther, Seong Jin An, Lamuel Abraham David, Kevin Hays, Marissa Wood, Nathan D. Phillip, Yangping Sheng, Chengyu Mao, Sergiy Kalnaus, Claus Daniel, David L. Wood

Research output: Contribution to journalReview articlepeer-review

244 Scopus citations

Abstract

Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost ($268/kWh in 2015) is still >2 times what the USABC targets ($125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

Original languageEnglish
Pages (from-to)1484-1496
Number of pages13
JournalJOM
Volume69
Issue number9
DOIs
StatePublished - Sep 1 2017

Funding

This research at Oak Ridge National Laboratory, managed by UT Battelle, LLC, for the U.S. Department of Energy (DOE) under Contract DE-AC05-00OR22725, was sponsored by the Office of Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office (VTO) (Deputy Director: David Howell) Applied Battery Research subprogram (Program Manager: Peter Faguy). The U.S. government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this article, or allow others to do so, for U.S. government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ).

Fingerprint

Dive into the research topics of 'Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries'. Together they form a unique fingerprint.

Cite this