TY - JOUR
T1 - Toward Decoding the Relationship between Domain Structure and Functionality in Ferroelectrics via Hidden Latent Variables
AU - Kalinin, Sergei V.
AU - Kelley, Kyle
AU - Vasudevan, Rama K.
AU - Ziatdinov, Maxim
N1 - Publisher Copyright:
© 2021 American Chemical Society. All rights reserved.
PY - 2021/1/13
Y1 - 2021/1/13
N2 - Polarization switching mechanisms in ferroelectric materials are fundamentally linked to local domain structure and the presence of the structural defects, which both can act as nucleation and pinning centers and create local electrostatic and mechanical depolarization fields affecting wall dynamics. However, the general correlative mechanisms between domain structure and polarization dynamics are only weakly explored, precluding insight into the associated physical mechanisms. Here, the correlation between local domain structures and switching behavior in ferroelectric materials is explored using convolutional encoder-decoder networks, enabling image to spectral (im2spec) and spectral to image (spec2im) translations via encoding of latent variables. The latter reflect the assumption that the relationship between domain structure and polarization switching is parsimonious, i.e., is based upon a small number of local mechanisms. The analysis of latent variables distributions and their real-space representations provides insight into the predictability of the local switching behavior and hence associated physical mechanisms. We further pose that the regions where these correlative relationships are violated, i.e., predictability of the polarization dynamics from domain structure is reduced, represent the obvious target for detailed studies, e.g., in the context of automated experiments. This approach provides a workflow to establish the presence of correlation between local spectral responses and local structure and can be universally applied to spectral imaging techniques such as piezoresponse force microscopy (PFM), scanning tunneling microscopy (STM) and spectroscopy, and electron energy loss spectroscopy (EELS) in scanning transmission electron microscopy (STEM).
AB - Polarization switching mechanisms in ferroelectric materials are fundamentally linked to local domain structure and the presence of the structural defects, which both can act as nucleation and pinning centers and create local electrostatic and mechanical depolarization fields affecting wall dynamics. However, the general correlative mechanisms between domain structure and polarization dynamics are only weakly explored, precluding insight into the associated physical mechanisms. Here, the correlation between local domain structures and switching behavior in ferroelectric materials is explored using convolutional encoder-decoder networks, enabling image to spectral (im2spec) and spectral to image (spec2im) translations via encoding of latent variables. The latter reflect the assumption that the relationship between domain structure and polarization switching is parsimonious, i.e., is based upon a small number of local mechanisms. The analysis of latent variables distributions and their real-space representations provides insight into the predictability of the local switching behavior and hence associated physical mechanisms. We further pose that the regions where these correlative relationships are violated, i.e., predictability of the polarization dynamics from domain structure is reduced, represent the obvious target for detailed studies, e.g., in the context of automated experiments. This approach provides a workflow to establish the presence of correlation between local spectral responses and local structure and can be universally applied to spectral imaging techniques such as piezoresponse force microscopy (PFM), scanning tunneling microscopy (STM) and spectroscopy, and electron energy loss spectroscopy (EELS) in scanning transmission electron microscopy (STEM).
KW - ferroelectrics
KW - latent space
KW - machine learning
KW - neural networks
KW - scanning probe microscopy
UR - http://www.scopus.com/inward/record.url?scp=85099660305&partnerID=8YFLogxK
U2 - 10.1021/acsami.0c15085
DO - 10.1021/acsami.0c15085
M3 - Article
C2 - 33397080
AN - SCOPUS:85099660305
SN - 1944-8244
VL - 13
SP - 1693
EP - 1703
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 1
ER -