Toward an Autonomous Workflow for Single Crystal Neutron Diffraction

Junqi Yin, Guannan Zhang, Huibo Cao, Sajal Dash, Bryan C. Chakoumakos, Feiyi Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

The operation of the neutron facility relies heavily on beamline scientists. Some experiments can take one or two days with experts making decisions along the way. Leveraging the computing power of HPC platforms and AI advances in image analyses, here we demonstrate an autonomous workflow for the single-crystal neutron diffraction experiments. The workflow consists of three components: an inference service that provides real-time AI segmentation on the image stream from the experiments conducted at the neutron facility, a continuous integration service that launches distributed training jobs on Summit to update the AI model on newly collected images, and a frontend web service to display the AI tagged images to the expert. Ultimately, the feedback can be directly fed to the equipment at the edge in deciding the next-step experiment without requiring an expert in the loop. With the analyses of the requirements and benchmarks of the performance for each component, this effort serves as the first step toward an autonomous workflow for real-time experiment steering at ORNL neutron facilities.

Original languageEnglish
Title of host publicationAccelerating Science and Engineering Discoveries Through Integrated Research Infrastructure for Experiment, Big Data, Modeling and Simulation - 22nd Smoky Mountains Computational Sciences and Engineering Conference, SMC 2022, Revised Selected Papers
EditorsKothe Doug, Geist Al, Swaroop Pophale, Hong Liu, Suzanne Parete-Koon
PublisherSpringer Science and Business Media Deutschland GmbH
Pages244-256
Number of pages13
ISBN (Print)9783031236051
DOIs
StatePublished - 2022
EventSmoky Mountains Computational Sciences and Engineering Conference, SMC 2022 - Virtual, Online
Duration: Aug 24 2022Aug 25 2022

Publication series

NameCommunications in Computer and Information Science
Volume1690 CCIS
ISSN (Print)1865-0929
ISSN (Electronic)1865-0937

Conference

ConferenceSmoky Mountains Computational Sciences and Engineering Conference, SMC 2022
CityVirtual, Online
Period08/24/2208/25/22

Funding

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. This neutron data used resources at the High Flux Isotope Reactor, the DOE Office of Science User Facility operated by ORNL. Keywords: Autonomous workflow · Inference at the edge · Integrated ecosystem · Image segmentation This manuscript has been co-authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy. gov/downloads/doe-public-access-plan).

FundersFunder number
U.S. Department of Energy
Office of Science
Oak Ridge National Laboratory

    Keywords

    • Autonomous workflow
    • Image segmentation
    • Inference at the edge
    • Integrated ecosystem

    Fingerprint

    Dive into the research topics of 'Toward an Autonomous Workflow for Single Crystal Neutron Diffraction'. Together they form a unique fingerprint.

    Cite this