Abstract
The operation of the neutron facility relies heavily on beamline scientists. Some experiments can take one or two days with experts making decisions along the way. Leveraging the computing power of HPC platforms and AI advances in image analyses, here we demonstrate an autonomous workflow for the single-crystal neutron diffraction experiments. The workflow consists of three components: an inference service that provides real-time AI segmentation on the image stream from the experiments conducted at the neutron facility, a continuous integration service that launches distributed training jobs on Summit to update the AI model on newly collected images, and a frontend web service to display the AI tagged images to the expert. Ultimately, the feedback can be directly fed to the equipment at the edge in deciding the next-step experiment without requiring an expert in the loop. With the analyses of the requirements and benchmarks of the performance for each component, this effort serves as the first step toward an autonomous workflow for real-time experiment steering at ORNL neutron facilities.
Original language | English |
---|---|
Title of host publication | Accelerating Science and Engineering Discoveries Through Integrated Research Infrastructure for Experiment, Big Data, Modeling and Simulation - 22nd Smoky Mountains Computational Sciences and Engineering Conference, SMC 2022, Revised Selected Papers |
Editors | Kothe Doug, Geist Al, Swaroop Pophale, Hong Liu, Suzanne Parete-Koon |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 244-256 |
Number of pages | 13 |
ISBN (Print) | 9783031236051 |
DOIs | |
State | Published - 2022 |
Event | Smoky Mountains Computational Sciences and Engineering Conference, SMC 2022 - Virtual, Online Duration: Aug 24 2022 → Aug 25 2022 |
Publication series
Name | Communications in Computer and Information Science |
---|---|
Volume | 1690 CCIS |
ISSN (Print) | 1865-0929 |
ISSN (Electronic) | 1865-0937 |
Conference
Conference | Smoky Mountains Computational Sciences and Engineering Conference, SMC 2022 |
---|---|
City | Virtual, Online |
Period | 08/24/22 → 08/25/22 |
Funding
This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. This neutron data used resources at the High Flux Isotope Reactor, the DOE Office of Science User Facility operated by ORNL. Keywords: Autonomous workflow · Inference at the edge · Integrated ecosystem · Image segmentation This manuscript has been co-authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy. gov/downloads/doe-public-access-plan).
Keywords
- Autonomous workflow
- Image segmentation
- Inference at the edge
- Integrated ecosystem