Abstract
While PLA possesses modest to good strength and stiffness, broader application is hindered by its brittle nature. The aim of this study was to develop strong and tough polymeric materials from renewable biomaterials and understand the underlying interactions and mechanisms. Cellulose nanofibrils (CNFs) and epoxidized soybean oil (ESO) were compounded with poly(lactic acid) (PLA) to create a PLA-CNF-ESO tertiary nanocomposite system. Tensile and dynamic mechanical analyses were performed to see how variations in ESO and CNF content affect mechanical properties such as strength, modulus, ductility, and toughness. It was found that at low CNF levels (10 wt%) the addition of ESO can improve the ductility of the nanocomposites 5- to 10-fold with only slight losses in strength and modulus, while at higher CNF levels (20 and 30 wt%), ESO exhibited little effect on mechanical properties, possibly due to percolation of CNFs in the matrix, dominating stress transfer. Therefore, it is important to optimize CNF and ESO amounts in composites to achieve materials with both high strength and high toughness. Efforts have been made to understand the underlying mechanisms of the mechanical behavior of one class of these composites via thermal, dynamic mechanical, rheological, morphological, and Raman analyses.
Original language | English |
---|---|
Pages (from-to) | 188-197 |
Number of pages | 10 |
Journal | Materials and Design |
Volume | 139 |
DOIs | |
State | Published - Feb 5 2018 |
Funding
This research is sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office , under contract DE-AC05-00OR22725 with UT-Battelle, LLC. The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes.
Funders | Funder number |
---|---|
U.S. Department of Energy | |
Advanced Manufacturing Office | DE-AC05-00OR22725 |
Office of Energy Efficiency and Renewable Energy |