Top-quark physics at the CLIC electron-positron linear collider

The CLICdp collaboration

Research output: Contribution to journalArticlepeer-review

44 Scopus citations

Abstract

The Compact Linear Collider (CLIC) is a proposed future high-luminosity linear electron-positron collider operating at three energy stages, with nominal centre-of-mass energies s = 380 GeV, 1.5 TeV, and 3 TeV. Its aim is to explore the energy frontier, providing sensitivity to physics beyond the Standard Model (BSM) and precision measurements of Standard Model processes with an emphasis on Higgs boson and top-quark physics. The opportunities for top-quark physics at CLIC are discussed in this paper. The initial stage of operation focuses on top-quark pair production measurements, as well as the search for rare flavour-changing neutral current (FCNC) top-quark decays. It also includes a top-quark pair production threshold scan around 350 GeV which provides a precise measurement of the top-quark mass in a well-defined theoretical framework. At the higher-energy stages, studies are made of top-quark pairs produced in association with other particles. A study of t̄tH production including the extraction of the top Yukawa coupling is presented as well as a study of vector boson fusion (VBF) production, which gives direct access to high-energy electroweak interactions. Operation above 1 TeV leads to more highly collimated jet environments where dedicated methods are used to analyse the jet constituents. These techniques enable studies of the top-quark pair production, and hence the sensitivity to BSM physics, to be extended to higher energies. This paper also includes phenomenological interpretations that may be performed using the results from the extensive top-quark physics programme at CLIC. [Figure not available: see fulltext.]

Original languageEnglish
Article number3
JournalJournal of High Energy Physics
Volume2019
Issue number11
DOIs
StatePublished - Nov 1 2019
Externally publishedYes

Funding

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

FundersFunder number
Not addedST/P002048/1
Creative Commons Attribution License
Horizon 2020 Framework Programme654168, 631962
Seventh Framework Programme
Science and Technology Facilities CouncilST/N000331/1

    Keywords

    • Top physics
    • e+-e- Experiments

    Fingerprint

    Dive into the research topics of 'Top-quark physics at the CLIC electron-positron linear collider'. Together they form a unique fingerprint.

    Cite this