Abstract
Tungsten targets are irradiated with 12.3 MeV W4+ ions to damage levels up to 2.0 displacements per atom. These irradiated targets are then exposed to high-flux deuterium plasmas with surface temperatures ranging from 360 to 950 K. Nuclear reaction analysis shows significant enhancement of retention in the damaged region of the tungsten for all temperatures. Thermal desorption spectroscopy (TDS) shows an enhancement of both high energy and low-energy trap concentrations due to the W4+ irradiation although the distribution of the trapped deuterium among these different trap types can vary strongly with temperature. In this investigation, TMAP7, a 1-D slab model hydrogen transport code, is used to fit the TDS spectra to gain insight into the trap energies and evolution and trapping mechanisms during the plasma exposure. At lower temperatures the trapping is diffusion-limited, while at the highest temperatures, there is a significant fraction of unfilled low-energy traps and trap annealing.
Original language | English |
---|---|
Pages (from-to) | S636-S640 |
Journal | Journal of Nuclear Materials |
Volume | 415 |
Issue number | 1 SUPPL |
DOIs | |
State | Published - Aug 1 2011 |
Externally published | Yes |
Funding
This work, supported by the European Communities under the contract of the Association EURATOM/FOM, was carried out within the framework of the European Fusion Programme with financial support from NWO. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
Funders | Funder number |
---|---|
Nederlandse Organisatie voor Wetenschappelijk Onderzoek |