Abstract
Time-resolved diffraction has become a vital tool for probing dynamic responses to an applied stimulus. Such experiments traditionally use hardware solutions to histogram measured data into their respective bin. We will show that a major advantage of event-based data acquisition, which time-stamps measured diffraction data with 100 ns accuracy, is much preferred over hardware histogramming of the data by enabling postprocessing for advanced custom binning using a software solution. This approach is made even more powerful by coupling measured diffraction data with metadata about the applied stimuli and material response. In this work, we present a time-filter approach that leverages the power of event-based diffraction collection to reduce stroboscopic data measured over many hours into equally weighted segments that represent subsets of the response to a single cycle of the applied stimulus. We demonstrate this approach by observing ferroelectric/ferroelastic domain wall motion during electric field cycling of BaTiO3. The developed approach can readily be expanded to investigate other dynamic phenomena using complex sample environments.
Original language | English |
---|---|
Article number | 092803 |
Journal | Review of Scientific Instruments |
Volume | 89 |
Issue number | 9 |
DOIs | |
State | Published - Sep 1 2018 |