Abstract
Pipeline architectures provide a versatile and efficient mechanism for constructing visualizations, and they have been implemented in numerous libraries and applications over the past two decades. In addition to allowing developers and users to freely combine algorithms, visualization pipelines have proven to work well when streaming data and scale well on parallel distributed-memory computers. However, current pipeline visualization frameworks have a critical flaw: they are unable to manage time varying data. As data flows through the pipeline, each algorithm has access to only a single snapshot in time of the data. This prevents the implementation of algorithms that do any temporal processing such as particle tracing; plotting over time; or interpolation, fitting, or smoothing of time series data. As data acquisition technology improves, as simulation time-integration techniques become more complex, and as simulations save less frequently and regularly, the ability to analyze the time-behavior of data becomes more important. This paper describes a modification to the traditional pipeline architecture that allows it to accommodate temporal algorithms. Furthermore, the architecture allows temporal algorithms to be used in conjunction with algorithms expecting a single time snapshot, thus simplifying software design and allowing adoption into existing pipeline frameworks. Our architecture also continues to work well in parallel distributed-memory environments. We demonstrate our architecture by modifying the popular VTK framework and exposing the functionality to the ParaView application. We use this framework to apply time-dependent algorithms on large data with a parallel cluster computer and thereby exercise a functionality that previously did not exist.
Original language | English |
---|---|
Pages (from-to) | 1376-1383 |
Number of pages | 8 |
Journal | IEEE Transactions on Visualization and Computer Graphics |
Volume | 13 |
Issue number | 6 |
DOIs | |
State | Published - Nov 2007 |
Externally published | Yes |
Funding
Thanks to Jörg Ziefle, ETH Zürich; Theophane Foggia, Swiss National Supercomputing Centre; David Graham, Plymouth University, UK, for their assistance and test data. K. Moreland and D. Thompson were supported by the United States Department of Energy, Office of Defense Programs. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000.
Funders | Funder number |
---|---|
U.S. Department of Energy | |
Office of Defense Programs |
Keywords
- Data-parallel visualization pipeline
- Time-varying data