TY - JOUR
T1 - Time-Dependent Perspective for the Intramolecular Couplings of the N-H Stretches of Protonated Tryptophan
AU - Kaiser, Alexander
AU - Jayee, Bhumika
AU - Yao, Yuxuan
AU - Ma, Xinyou
AU - Wester, Roland
AU - Hase, William L.
N1 - Publisher Copyright:
© 2020 American Chemical Society.
PY - 2020/5/21
Y1 - 2020/5/21
N2 - Quasi-classical direct dynamics simulations, performed with the B3LYP-D3/cc-pVDZ electronic structure theory, are reported for vibrational relaxation of the three NH stretches of the-NH3+ group of protonated tryptophan (TrpH+), excited to the n = 1 local mode states. The intramolecular vibrational energy relaxation (IVR) rates determined for these states, from the simulations, are in good agreement with the experiment. In accordance with the experiment, IVR for the free NH stretch is slowest, with faster IVR for the remaining two NH stretches which have intermolecular couplings with an O atom and a benzenoid ring. For the free NH and the NH coupled to the benzenoid ring, there are beats (i.e., recurrences) in their relaxations versus time. For the free NH stretch, 50% of the population remained in n = 1 when the trajectories were terminated at 0.4 ps. IVR for the free NH stretch is substantially slower than for the CH stretch in benzene. The agreement found in this study between quasi-classical direct dynamics simulations and experiments indicates the possible applicability of this simulation method to larger biological molecules. Because IVR can drive or inhibit reactions, calculations of IVR time scales are of interest, for example, in unimolecular reactions, mode-specific chemistry, and many photochemical processes.
AB - Quasi-classical direct dynamics simulations, performed with the B3LYP-D3/cc-pVDZ electronic structure theory, are reported for vibrational relaxation of the three NH stretches of the-NH3+ group of protonated tryptophan (TrpH+), excited to the n = 1 local mode states. The intramolecular vibrational energy relaxation (IVR) rates determined for these states, from the simulations, are in good agreement with the experiment. In accordance with the experiment, IVR for the free NH stretch is slowest, with faster IVR for the remaining two NH stretches which have intermolecular couplings with an O atom and a benzenoid ring. For the free NH and the NH coupled to the benzenoid ring, there are beats (i.e., recurrences) in their relaxations versus time. For the free NH stretch, 50% of the population remained in n = 1 when the trajectories were terminated at 0.4 ps. IVR for the free NH stretch is substantially slower than for the CH stretch in benzene. The agreement found in this study between quasi-classical direct dynamics simulations and experiments indicates the possible applicability of this simulation method to larger biological molecules. Because IVR can drive or inhibit reactions, calculations of IVR time scales are of interest, for example, in unimolecular reactions, mode-specific chemistry, and many photochemical processes.
UR - http://www.scopus.com/inward/record.url?scp=85085265242&partnerID=8YFLogxK
U2 - 10.1021/acs.jpca.0c01611
DO - 10.1021/acs.jpca.0c01611
M3 - Article
C2 - 32352296
AN - SCOPUS:85085265242
SN - 1089-5639
VL - 124
SP - 4062
EP - 4067
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 20
ER -