TY - GEN
T1 - Three dimensional measurements of a turbine blade using magnetic resonance thermometry and magnetic resonance velocimetry
AU - Williams, Elliott T.
AU - Caniano, Daniel C.
AU - Davis, Gregory
AU - Ferrell, Angus M.
AU - Benson, Michael J.
AU - Poppel, Bret P.Van
AU - Elkins, Christopher J.
N1 - Publisher Copyright:
© 2017 ASME.
PY - 2017
Y1 - 2017
N2 - A hollowed NACA-0012 airfoil with removable inserts was developed to study the complex flow through two interior chambers. The geometry represented an internally cooled gas turbine blade with internal impingement in several locations. A fully turbulent water flow passed the airfoil. Within the airfoil, a second fluid at a different temperature was mixed through the insert nearest the leading edge and recirculated to the aft chamber for additional internal cooling before exiting the airfoil as film cooling on the suction side and at the trailing edge. Timeaveraged, three-dimensional temperature and three-component velocity measurements were collected using Magnetic Resonance Imagery (MRI) based techniques. Magnetic Resonance Velocimetry (MRV) and Thermometry (MRT) are techniques for measuring the velocity and temperature of fully turbulent flows at sub-millimeter-scale resolution. The benefits of these techniques over similar measuring techniques include the ability to collect full-field, threedimensional, nonintrusive, non-optical measurements for conjugate heat transfer simulation validation in complex, turbulent flows. Multiple MRI-based techniques can be combined within the same experiment to explore the interaction between the mean fields of multiple quantities. The experimental setup employed in this work produced time-averaged velocity and temperature data illustrating flow details through the airfoil's interior chambers and heat flux through the entire airfoil and at specific locations.
AB - A hollowed NACA-0012 airfoil with removable inserts was developed to study the complex flow through two interior chambers. The geometry represented an internally cooled gas turbine blade with internal impingement in several locations. A fully turbulent water flow passed the airfoil. Within the airfoil, a second fluid at a different temperature was mixed through the insert nearest the leading edge and recirculated to the aft chamber for additional internal cooling before exiting the airfoil as film cooling on the suction side and at the trailing edge. Timeaveraged, three-dimensional temperature and three-component velocity measurements were collected using Magnetic Resonance Imagery (MRI) based techniques. Magnetic Resonance Velocimetry (MRV) and Thermometry (MRT) are techniques for measuring the velocity and temperature of fully turbulent flows at sub-millimeter-scale resolution. The benefits of these techniques over similar measuring techniques include the ability to collect full-field, threedimensional, nonintrusive, non-optical measurements for conjugate heat transfer simulation validation in complex, turbulent flows. Multiple MRI-based techniques can be combined within the same experiment to explore the interaction between the mean fields of multiple quantities. The experimental setup employed in this work produced time-averaged velocity and temperature data illustrating flow details through the airfoil's interior chambers and heat flux through the entire airfoil and at specific locations.
UR - http://www.scopus.com/inward/record.url?scp=85040984530&partnerID=8YFLogxK
U2 - 10.1115/IMECE2017-71482
DO - 10.1115/IMECE2017-71482
M3 - Conference contribution
AN - SCOPUS:85040984530
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Heat Transfer and Thermal Engineering
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017
Y2 - 3 November 2017 through 9 November 2017
ER -